This paper presents an accurate and efficient hybrid solution method, based on Newmark-β algorithm, for solving nonlinear oscillators containing fractional derivatives (FDs) of arbitrary order. Basically, this method employs a quadrature method and the Newmark-β algorithm to handle FDs and integer derivatives, respectively. To reduce the computational burden, the proposed approach provides a strategy to avoid nonlinear algebraic equations arising routinely in the Newmark-β algorithm. Numerical results show that the presented method has second-order accuracy. Importantly, it can be applied to both linear and nonlinear oscillators with FDs of arbitrary order, without losing any precision and efficiency.

References

1.
Bagley
,
L.
, and
Torvik
,
J.
,
1983
, “
A Theoretical Basis for the Application of Fractional Calculus to Viscoelasticity
,”
J. Rheol.
,
27
(
3
), pp.
201
210
.
2.
Meral
,
C.
,
Royston
,
J.
, and
Magin
,
R.
,
2010
, “
Fractional Calculus in Viscoelasticity: An Experimental Study
,”
Commun. Nonlinear Sci. Numer. Simul.
,
15
(
4
), pp.
939
945
.
3.
Chen
,
W.
,
2008
, “
An Intuitive Study of Fractional Derivative Modeling and Fractional Quantum in Soft Matter
,”
J. Vib. Control
,
14
(
9–10
), pp.
1651
1657
.
4.
Nicolle
,
S.
,
Vezin
,
P.
, and
Palierne
,
F.
,
2010
, “
A Strain-Hardening Bi-Power Law for the Nonlinear Behaviour of Biological Soft Tissues
,”
J. Biomech.
,
43
(
5
), pp.
927
932
.
5.
Metzler
,
R.
, and
Klafter
,
J.
,
2000
, “
The Random Walk's Guide to Anomalous Diffusion: A Fractional Dynamics Approach
,”
Phys. Rep.
,
339
(
1
), pp.
1
77
.
6.
Zhokh
,
A.
,
Trypolskyi
,
I.
, and
Strizhak
,
E.
,
2017
, “
An Investigation of Anomalous Time-Fractional Diffusion of Isopropyl Alcohol in Mesoporous Silica
,”
Int. J. Heat Mass Transfer
,
104
, pp.
493
502
.
7.
Podlubny
,
I.
,
1999
, “
Fractional-Order Systems and PI-Lambda-D-Mu-Controllers
,”
IEEE Trans. Autom. Control
,
44
(
1
), pp.
208
214
.
8.
Monje
,
A.
,
Chen
,
Q.
,
Vinagre
,
M.
,
Xue
,
D.
, and
Feliu-Batlle
,
V.
,
2010
,
Fractional-Order Systems and Controls: Fundamentals and Applications
,
Springer Science & Business Media
, London.
9.
Rossikhin
,
A.
, and
Shitikova
,
V.
,
2010
, “
Application of Fractional Calculus for Dynamic Problems of Solid Mechanics: Novel Trends and Recent Results
,”
ASME Appl. Mech. Rev
,
63
(
1
), p.
010801
.
10.
Baleanu
,
D.
,
Asad
,
H.
, and
Petras
,
I.
,
2015
, “
Numerical Solution of the Fractional Euler-Lagrange's Equations of a Thin Elastica Mode
,”
Nonlinear Dyn.
,
81
(
1–2
), pp.
97
102
.
11.
Diethelm
,
K.
,
Ford
,
J.
, and
Freed
,
D.
,
2002
, “
A Predictor-Corrector Approach for the Numerical Solution of Fractional Differential Equations
,”
Nonlinear Dyn.
,
29
(
1
), pp.
3
22
.
12.
Diethelm
,
K.
, and
Ford
,
J.
,
2004
, “
Multi-Order Fractional Differential Equations and Their Numerical Solution
,”
Appl. Math. Comput.
,
154
(
3
), pp.
621
640
.
13.
Asl
,
M. S.
, and
Javidi
,
M.
,
2017
, “
An Improved PC Scheme for Nonlinear Fractional Differential Equations: Error and Stability Analysis
,”
J. Comput. Appl. Math.
,
324
, pp.
101
117
.
14.
Soares
,
D. S.
, Jr.
,
Großeholz
,
G.
, and
Estorff
,
O. V.
,
2015
, “
An Efficient Staggered Time-Marching Procedure for Porodynamics
,”
Comput. Methods Appl. Mech. Eng.
,
297
, pp.
1
17
.
15.
Simsek
,
M.
,
2010
, “
Dynamic Analysis of an Embedded Microbeam Carrying a Moving Microparticle Based on the Modified Couple Stress Theory
,”
Int. J. Eng. Sci.
,
48
(
12
), pp.
1721
1732
.
16.
Deü
,
F.
, and
Matignon
,
D.
,
2010
, “
Simulation of Fractionally Damped Mechanical Systems by Means of a Newmark-Diffusive Scheme
,”
Comput. Math. Appl.
,
59
(
5
), pp.
1745
1753
.
17.
Zhang
,
W.
, and
Shimizu
,
N.
,
1998
, “
Numerical Algorithm for Dynamic Problems Involving Fractional Operators
,”
JSME Int. J. C
,
41
(
3
), pp.
364
370
.
18.
Bucher
,
C.
, and
Pirrotta
,
A.
,
2015
, “
Dynamic Finite Element Analysis of Fractionally Damped Structural Systems in the Time Domain
,”
Acta Mech.
,
226
(
12
), p.
3977
.
19.
Spanos
,
D.
, and
Evangelatos
,
I.
,
2010
, “
Response of a Non-Linear System With Restoring Forces Governed by Fractional Derivatives-Time Domain Simulation and Statistical Linearization Solution
,”
Soil Dyn. Earthquake Eng.
,
30
(
9
), pp.
811
821
.
20.
Diethelm
,
K.
,
Ford
,
N. J.
, and
Freed
,
A. D.
,
2004
, “
Detailed Error Analysis for a Fractional Adams Method
,”
Numer. Algorithm
,
36
(
1
), pp.
31
52
.
21.
Yuan
,
L.
, and
Agrawal
,
O. P.
,
2002
, “
A Numerical Scheme for Dynamic Systems Containing Fractional Derivatives
,”
ASME J. Vib. Acoust.
,
124
(
2
), pp.
321
324
.
22.
Singh
,
S. J.
, and
Chatterjee
,
A.
,
2006
, “
Galerkin Projections and Finite Elements for Fractional Order Derivatives
,”
Nonlinear Dyn.
,
45
(
1–2
), pp.
183
206
.
23.
Singh
,
S. J.
, and
Chatterjee
,
A.
,
2011
, “
Unified Galerkin- and DAE-Based Approximation of Fractional Order Systems
,”
ASME J. Comput. Nonlinear Dyn.
,
6
(
2
), p.
021010
.
24.
Das
,
S.
, and
Chatterjee
,
A.
,
2013
, “
Simple Recipe for Accurate Solution of Fractional Order Equations
,”
ASME J. Comput. Nonlinear Dyn.
,
8
(
3
), p.
031007
.
You do not currently have access to this content.