Abstract

Due to kinematic function requirements, deployable structures inevitably have many clearance joints. The existence of clearance joints not only reduces the structural stiffness but also leads to complex nonlinear dynamic characteristics. This paper proposed a general numerical method based on the wave motion theory, which is able to analyze these complex nonlinear dynamic characteristics of frame structures with clearance joints. The dynamic model of frame structures with clearance joints is derived on the basis of continuous wave equations. The clearance joint is modeling by combining Lankarani and Nikravesh contact model with the Ambrósio friction model. The established dynamic model of frame structures is solved by the finite difference time domain (FDTD) method. A triangular frame structure with two clearance joints is taken as the numerical example for the verification of the proposed numerical method. Numerical results show that the longitudinal wave affects the distribution direction of contact positions and the transverse wave mainly affects the distribution range of contact positions. It has been also found that the introduction of torsional springs with reasonable pretension torque is able to significantly improve the distribution of contact positions and reduce state uncertainties of clearance joints in structural vibrations.

References

References
1.
Li
,
T. J.
,
2009
, “
Research and Application of Deployable Structures
,”
International Conference on Application Mechanisms and Machine Science
, Vol.
25
,
Wuhan, China
, Aug. 18– 22, pp.
35
36
.
2.
Kakizaki
,
T.
,
Deck
,
J. F.
, and
Dubowsky
,
S.
,
1993
, “
Modeling the Spatial Dynamics of Robotic Manipulators With Flexible Links and Joint Clearances
,”
ASME J. Mech. Des.
,
115
(
4
), pp.
839
847
.10.1115/1.2919277
3.
Jacobs
,
D. A.
, and
Waldron
,
K. J.
,
2015
, “
Modeling Inelastic Collisions With the Hunt-Crossley Model Using the Energetic Coefficient of Restitution
,”
ASME J. Comput. Nonlinear Dyn.
,
10
(
2
), p.
021001
.10.1115/1.4028473
4.
Machado
,
M.
,
Moreira
,
P.
,
Flores
,
P.
, and
Lankarani
,
H. M.
,
2012
, “
Compliant Contact Force Models in Multibody Dynamics: Evolution of the Hertz Contact Theory
,”
Mech. Mach. Theory
,
53
, pp.
99
121
.10.1016/j.mechmachtheory.2012.02.010
5.
Lankarani
,
H. M.
, and
Nikravesh
,
P. E.
,
1990
, “
A Contact Force Model With Hysteresis Damping for Impact Analysis of Multibody Systems
,”
ASME J. Mech. Des.
,
112
(
3
), pp.
369
376
.10.1115/1.2912617
6.
Skrinjar
,
L.
,
Slavic
,
J.
, and
Boltezar
,
M.
,
2018
, “
A Review of Continuous Contact-Force Models in Multibody Dynamics
,”
Int. J. Mech. Sci.
,
145
, pp.
171
187
.10.1016/j.ijmecsci.2018.07.010
7.
Wang
,
Z.
,
Tian
,
Q.
,
Hu
,
H. Y.
, and
Flores
,
P.
,
2016
, “
Nonlinear Dynamics and Chaotic Control of a Flexible Multibody System With Uncertain Joint Clearance
,”
Nonlinear Dyn.
,
86
(
3
), pp.
1571
1597
.10.1007/s11071-016-2978-8
8.
Marques
,
F.
,
Flores
,
P.
,
Claro
,
J. P.
, and
Lankarani
,
H. M.
,
2016
, “
A Survey and Comparison of Several Friction Force Models for Dynamic Analysis of Multibody Mechanical Systems
,”
Nonlinear Dyn.
,
86
(
3
), pp.
1407
1443
.10.1007/s11071-016-2999-3
9.
Chen
,
X. L.
,
Jiang
,
S.
,
Deng
,
Y.
, and
Wang
,
Q.
,
2018
, “
Dynamic Analysis of 2-DOF Complex Planar Mechanical System With Joint Clearance and Flexible Links
,”
Nonlinear Dyn.
,
93
(
3
), pp.
1009
1034
.10.1007/s11071-018-4242-x
10.
Ambrósio
,
J. A. C.
,
2003
, “
Impact of Rigid and Flexible Multibody Systems: Deformation Description and Contact Model
,”
Virtual Nonlinear Multibody Syst.
,
103
, pp.
57
81
.10.1007/978-94-010-0203-5_4
11.
Tan
,
X.
,
Chen
,
G. P.
, and
Sun
,
D. Y.
,
2018
, “
Dynamic Analysis of Planar Mechanical Systems With Clearance Joint Based on LuGre Friction Model
,”
ASME J. Comput. Nonlinear Dyn.
,
13
(
6
), p.
061003
.10.1115/1.4039877
12.
Li
,
J. L.
,
Huang
,
H.
,
Yan
,
S.
, and
Yang
,
Y.
,
2017
, “
Kinematic Accuracy and Dynamic Performance of a Simple Planar Space Deployable Mechanism With Joint Clearance Considering Parameter Uncertainty
,”
Acta Astronaut.
,
136
, pp.
34
45
.10.1016/j.actaastro.2017.02.027
13.
Yaqubi
,
S.
,
Dardel
,
M.
,
Daniali
,
H. M.
, and
Ghasemi
,
M. H.
,
2016
, “
Modeling and Control of Crank–Slider Mechanism With Multiple Clearance Joints
,”
Multibody Syst. Dyn.
,
36
(
2
), pp.
143
167
.10.1007/s11044-015-9486-3
14.
Chen
,
X. L.
,
Jiang
,
S.
,
Deng
,
Y.
, and
Wang
,
Q.
,
2019
, “
Dynamic Modeling and Response Analysis of a Planar Rigid-Body Mechanism With Clearance
,”
ASME J. Comput. Nonlinear Dyn.
,
14
(
5
), p.
051004
.10.1115/1.4042602
15.
Wramner
,
L.
,
2019
, “
Numerical Algorithms for Simulation of One-Dimensional Mechanical Systems With Clearance-Type Nonlinearities
,”
ASME J. Comput. Nonlinear Dyn.
,
14
(
6
), p.
061008
.10.1115/1.4043087
16.
Cao
,
D. Q.
,
Chu
,
S. M.
,
Li
,
Z. F.
, and
Liu
,
R. Q.
,
2013
, “
Study on the Non-Smooth Mechanical Models and Dynamics for Space Deployable Mechanisms
,”
Chin. J. Theor. Appl. Mech.
,
45
(
1
), pp.
3
15
.10.6052/0459-1879-12-341
17.
Hu
,
H. Y.
,
Tian
,
Q.
,
Zhang
,
W.
,
Jin
,
D. P.
, and
Song
,
Y. P.
,
2013
, “
Nonlinear Dynamic and Control of Large Deployable Space Structures Composed of Trusses and Meshes
,”
Adv. Mech.
,
43
(
4
), pp.
390
414
.10.6052/1000-0992-13-045
18.
Li
,
G.
,
Shi
,
G. Q.
, and
Bellinger
,
N.
,
2010
, “
Effects of Clearance Fit and Friction Coefficient on Triple-Row Riveted Lap Joints
,”
AIAA
Paper No. 2015-3025.10.2514/6.2010-3025
19.
Zhang
,
J.
,
Guo
,
H.-W.
,
Liu
,
R.-Q.
,
Wu
,
J.
,
Kou
,
Z.-M.
, and
Deng
,
Z.-Q.
,
2016
, “
Nonlinear Dynamic Characteristic Analysis of Joint Beam With Clearance Joint
,”
Acta Astronaut.
,
129
, pp.
135
146
.10.1016/j.actaastro.2016.09.009
20.
Zhang
,
J.
,
Guo
,
H.-W.
,
Liu
,
R.-Q.
,
Wu
,
J.
,
Kou
,
Z.-M.
, and
Deng
,
Z.-Q.
,
2015
, “
Damping Formulations for Jointed Deployable Space Structure
,”
Nonlinear Dyn.
,
81
(
4
), pp.
1969
1980
.10.1007/s11071-015-2119-9
21.
Li
,
T. J.
,
Guo
,
J.
, and
Cao
,
Y. Y.
,
2011
, “
Dynamic Characteristics Analysis of Deployable Space Structures Considering Joint Clearance
,”
Acta Astronaut.
,
68
(
7–8
), pp.
974
983
.10.1016/j.actaastro.2010.08.039
22.
Jiang
,
G. Q.
,
Yang
,
X. D.
,
Zhang
,
W.
, and
Yang
,
T.
,
2019
, “
The Modeling and Dynamic Analysis of Two Jointed Beams With Clearance
,”
Appl. Math. Model.
,
74
, pp.
528
539
.10.1016/j.apm.2019.05.014
23.
Zhang
,
Z.
,
Li
,
T. J.
, and
Tang
,
Y. Q.
,
2019
, “
Traveling Wave Analytical Solutions of Vibration Band Gaps of Composite Periodic Beams
,”
J. Vib. Control
,
25
(
2
), pp.
460
472
.10.1177/1077546318783557
24.
Tang
,
Y. Q.
,
Li
,
T. J.
, and
Yan
,
Q. Y.
,
2017
, “
Damage Analysis of One-Dimensional Euler-Bernoulli Cracked Beam With Traveling Wave Method
,”
Int. J. Appl. Mech.
,
9
(
4
), p.
1750048
.10.1142/S175882511750048X
25.
Tang
,
Y. Q.
,
Li
,
T. J.
,
Chen
,
C. C.
, and
Wang
,
Z. W.
,
2017
, “
Stress Wave Propagation in Clearance Joints Based on Characteristics Method
,”
Struct. Eng. Mech.
,
62
(
6
), pp.
781
787
.
26.
Ma
,
X. F.
, and
Li
,
T. J.
,
2018
, “
Wave Analysis of Planar Deployable Structures With Revolute Clearance Joints Based on Spectral Element Method
,”
Int. J. Appl. Mech.
,
10
(
8
), p.
1850090
.10.1142/S1758825118500904
27.
Chen
,
C. L.
,
Li
,
Y. W.
, and
Jia
,
Y. H.
,
2019
, “
Dynamic Response and Nonlinear Characteristics of Spatial Parallel Mechanism With Spherical Clearance Joint
,”
ASME J. Comput. Nonlinear Dyn.
,
14
(
4
), p.
041010
.10.1115/1.4042636
28.
Wang
,
G. X.
, and
Wang
,
L.
,
2019
, “
Dynamics Investigation of Spatial Parallel Mechanism Considering Rod Flexibility and Spherical Joint Clearance
,”
Mech. Mach. Theory
,
137
, pp.
83
107
.10.1016/j.mechmachtheory.2019.03.017
29.
Selçuk
,
E.
,
2018
, “
Experimental Investigation of Flexible Connection and Clearance Joint Effects on the Vibration Responses of Mechanisms
,”
Mech. Mach. Theory
,
121
, pp.
515
529
.10.1016/j.mechmachtheory.2017.11.014
30.
Ambrosio
,
J.
, and
Pombo
,
J.
,
2018
, “
A Unified Formulation for Mechanical Joints With and Without Clearances/Bushings and/or Stops in the Framework of Multibody Systems
,”
Multibody Syst. Dyn.
,
42
(
3
), pp.
317
345
.10.1007/s11044-018-9613-z
31.
Xiang
,
W. W. K.
,
Yan
,
S. Z.
, and
Wu
,
J. N.
,
2019
, “
Dynamic Analysis of Planar Mechanical Systems Considering Stick-Slip and Stribeck Effect in Revolute Clearance Joints
,”
Nonlinear Dyn.
,
95
(
1
), pp.
321
341
.10.1007/s11071-018-4566-6
32.
Wang
,
J. L.
,
2019
, “
Modified Models for Revolute Joints Coupling Flexibility of Links in Multibody Systems
,”
Multibody Syst. Dyn.
,
45
(
1
), pp.
37
55
.10.1007/s11044-018-9616-9
33.
Xiang
,
W. W. K.
, and
Yan
,
S. Z.
,
2020
, “
Dynamic Analysis of Space Robot Manipulator Considering Clearance Joint and Parameter Uncertainty: Modeling, Analysis and Quantification
,”
Acta Astronaut.
,
169
, pp.
158
169
.10.1016/j.actaastro.2020.01.011
34.
Li
,
T. J.
,
Deng
,
H. Q.
, and
Zhang
,
L.
,
2017
, “
Mobility Analysis of Generalized Mechanisms Via Screw Algebra
,”
Mech. Mach. Sci.
,
408
, pp.
581
596
.10.1007/978-981-10-2875-5_48
35.
Marques
,
F.
,
Flores
,
P.
,
Claro
,
J. P.
, and
Lankarani
,
H. M.
,
2019
, “
Modeling and Analysis of Friction Including Rolling Effects in Multibody Dynamics: A Review
,”
Multibody Syst. Dyn.
,
45
(
2
), pp.
223
244
.10.1007/s11044-018-09640-6
36.
Marques
,
F.
,
Isaac
,
F.
,
Dourado
,
N.
, and
Souto
,
A. P.
,
2017
, “
A Study on the Dynamics of Spatial Mechanisms With Frictional Spherical Clearance Joints
,”
ASME J. Comput. Nonlinear Dyn.
,
12
(
5
), p.
051013
.10.1115/1.4036480
37.
Pal Kaur
,
N.
,
Kumar Shah
,
J.
,
Majhi
,
S.
, and
Mukherjee
,
A.
,
2019
, “
Healing and Simultaneous Ultrasonic Monitoring of Cracks in Concrete
,”
Mater. Today Commun.
,
18
, pp.
87
99
.10.1016/j.mtcomm.2018.10.022
38.
Cavalieri
,
F. J.
, and
Cardona
,
A.
,
2018
, “
Non-Smooth Model of a Frictionless and Dry Three-Dimensional Revolute Joint With Clearance for Multibody System Dynamics
,”
Mech. Mach. Theory
,
121
, pp.
335
354
.10.1016/j.mechmachtheory.2017.09.018
You do not currently have access to this content.