Abstract

A new path integration (PI) method is studied to improve the efficiency of computing probability density of nonlinear oscillators subject to combined harmonic and random excitation. The new PI method utilizes Fourier series to obtain a spectral presentation of the short time transition probability density (STPD) in the time domain and uses the method of linear least squares to determine the Fourier coefficients. It also utilizes a tensor product spline interpolation method to obtain an accurate representation of the STPD in the state space. The new PI method is applied to the monostable and bistable Duffing oscillators to predict the response statistics, including the time average of asymptotic mean squares and the spectral amplification factor. Specifically, the spectral amplification is used to characterize stochastic resonance of the bistable oscillator. The predictions show good agreement with Monte Carlo simulations and available data in the literature. The new PI method is also used to investigate the influence of noise intensity on stochastic P-bifurcation of the bistable oscillator. Finally, a case study shows that the new PI method reduces the computational time by 1–2 orders of magnitude in comparison with a traditional PI method.

References

1.
Namachchivaya
,
N. S.
,
1991
, “
Almost Sure Stability of Dynamical Systems Under Combined Harmonic and Stochastic Excitations
,”
J. Sound Vib.
,
151
(
1
), pp.
77
90
.10.1016/0022-460X(91)90653-2
2.
Lu
,
S.
,
He
,
Q.
, and
Wang
,
J.
,
2019
, “
A Review of Stochastic Resonance in Rotating Machine Fault Detection
,”
Mech. Syst. Signal Process.
,
116
, pp.
230
260
.10.1016/j.ymssp.2018.06.032
3.
Zhang
,
Y.
,
Zheng
,
R.
,
Kaizuka
,
T.
,
Su
,
D.
,
Nakano
,
K.
, and
Cartmell
,
M.
,
2015
, “
Broadband Vibration Energy Harvesting by Application of Stochastic Resonance From Rotational Environments
,”
Eur. Phys. J.: Spec. Top.
,
224
(
14–15
), pp.
2687
2701
.10.1140/epjst/e2015-02583-7
4.
Kim
,
H.
,
Tai
,
W. C.
,
Parker
,
J.
, and
Zuo
,
L.
,
2019
, “
Self-Tuning Stochastic Resonance Energy Harvesting for Rotating Systems Under Modulated Noise and Its Application to Smart Tires
,”
Mech. Syst. Signal Process.
,
122
, pp.
769
785
.10.1016/j.ymssp.2018.12.040
5.
Soong
,
T. T.
, and
Grigoriu
,
M.
,
1993
, “
Random Vibration of Mechanical and Structural Systems
,”
NASA STI/Recon Tech. Rep. A
,
93
, p.
14690
.https://ui.adsabs.harvard.edu/abs/1993STIA...9314690S/abstract
6.
Muscolino
,
G.
,
Ricciardi
,
G.
, and
Vasta
,
M.
,
1997
, “
Stationary and Non-Stationary Probability Density Function for Non-Linear Oscillators
,”
Int. J. Non-Linear Mech.
,
32
(
6
), pp.
1051
1064
.10.1016/S0020-7462(96)00134-5
7.
Langley
,
R.
,
1985
, “
A Finite Element Method for the Statistics of Non-Linear Random Vibration
,”
J. Sound Vib.
,
101
(
1
), pp.
41
54
.10.1016/S0022-460X(85)80037-7
8.
Kumar
,
P.
, and
Narayanan
,
S.
,
2006
, “
Solution of Fokker-Planck Equation by Finite Element and Finite Difference Methods for Nonlinear Systems
,”
Sadhana
,
31
(
4
), pp.
445
461
.10.1007/BF02716786
9.
Pichler
,
L.
,
Masud
,
A.
, and
Bergman
,
L. A.
,
2013
, “
Numerical Solution of the Fokker–Planck Equation by Finite Difference and Finite Element Methods—A Comparative Study
,”
Computational Methods in Stochastic Dynamics
,
Springer
, Dordrecht, The Netherlands, pp.
69
85
.
10.
Kougioumtzoglou
,
I.
, and
Spanos
,
P.
,
2012
, “
An Analytical Wiener Path Integral Technique for Non-Stationary Response Determination of Nonlinear Oscillators
,”
Probab. Eng. Mech.
,
28
, pp.
125
131
.10.1016/j.probengmech.2011.08.022
11.
Kougioumtzoglou
,
I. A.
, and
Spanos
,
P. D.
,
2014
, “
Nonstationary Stochastic Response Determination of Nonlinear Systems: A Wiener Path Integral Formalism
,”
J. Eng. Mech.
,
140
(
9
), p.
04014064
.10.1061/(ASCE)EM.1943-7889.0000780
12.
Kougioumtzoglou
,
I. A.
,
Di Matteo
,
A.
,
Spanos
,
P. D.
,
Pirrotta
,
A.
, and
Di Paola
,
M.
,
2015
, “
An Efficient Wiener Path Integral Technique Formulation for Stochastic Response Determination of Nonlinear MDOF Systems
,”
ASME J. Appl. Mech.
,
82
(
10
), p.
101005
.10.1115/1.4030890
13.
Psaros
,
A. F.
,
Brudastova
,
O.
,
Malara
,
G.
, and
Kougioumtzoglou
,
I. A.
,
2018
, “
Wiener Path Integral Based Response Determination of Nonlinear Systems Subject to Non-White, Non-Gaussian, and Non-Stationary Stochastic Excitation
,”
J. Sound Vib.
,
433
, pp.
314
333
.10.1016/j.jsv.2018.07.013
14.
Yu
,
J.
,
Cai
,
G.
, and
Lin
,
Y.
,
1997
, “
A New Path Integration Procedure Based on Gauss-Legendre Scheme
,”
Int. J. Non-Linear Mech.
,
32
(
4
), pp.
759
768
.10.1016/S0020-7462(96)00096-0
15.
Naess
,
A.
, and
Moe
,
V.
,
2000
, “
Efficient Path Integration Methods for Nonlinear Dynamic Systems
,”
Probab. Eng. Mech.
,
15
(
2
), pp.
221
231
.10.1016/S0266-8920(99)00031-4
16.
Huang
,
Z.
,
Zhu
,
W.
, and
Suzuki
,
Y.
,
2000
, “
Stochastic Averaging of Strongly Non-Linear Oscillators Under Combined Harmonic and White-Noise Excitations
,”
J. Sound Vib.
,
238
(
2
), pp.
233
256
.10.1006/jsvi.2000.3083
17.
Yu
,
J.
, and
Lin
,
Y.
,
2004
, “
Numerical Path Integration of a Non-Homogeneous Markov Process
,”
Int. J. Non-Linear Mech.
,
39
(
9
), pp.
1493
1500
.10.1016/j.ijnonlinmec.2004.02.011
18.
Xie
,
W.
,
Xu
,
W.
, and
Cai
,
L.
,
2005
, “
Path Integration of the Duffing–Rayleigh Oscillator Subject to Harmonic and Stochastic Excitations
,”
Appl. Math. Comput.
,
171
(
2
), pp.
870
884
.10.1016/j.amc.2005.01.095
19.
Xie
,
W.
,
Xu
,
W.
, and
Cai
,
L.
,
2006
, “
Study of the Duffing–Rayleigh Oscillator Subject to Harmonic and Stochastic Excitations by Path Integration
,”
Appl. Math. Comput.
,
172
(
2
), pp.
1212
1224
.10.1016/j.amc.2005.03.018
20.
Kumar
,
P.
, and
Narayanan
,
S.
,
2010
, “
Modified Path Integral Solution of Fokker–Planck Equation: Response and Bifurcation of Nonlinear Systems
,”
ASME J. Comput. Nonlinear Dyn.
,
5
(
1
), p.
011004
.10.1115/1.4000312
21.
Narayanan
,
S.
, and
Kumar
,
P.
,
2012
, “
Numerical Solutions of Fokker–Planck Equation of Nonlinear Systems Subjected to Random and Harmonic Excitations
,”
Probab. Eng. Mech.
,
27
(
1
), pp.
35
46
.10.1016/j.probengmech.2011.05.006
22.
Alevras
,
P.
,
2021
, “
On the Effect of the Electrical Load on Vibration Energy Harvesting Under Stochastic Resonance
,”
ASCE-ASME J. Risk Uncertainty Eng. Syst., Part B: Mech. Eng.
,
7
(
1
), p.
010902
.10.1115/1.4049209
23.
Kougioumtzoglou
,
I. A.
, and
Spanos
,
P. D.
,
2013
, “
Response and First-Passage Statistics of Nonlinear Oscillators Via a Numerical Path Integral Approach
,”
J. Eng. Mech.
,
139
(
9
), pp.
1207
1217
.10.1061/(ASCE)EM.1943-7889.0000564
24.
Köylüolu
,
H.
,
Nielsen
,
S. R.
, and
Çakmak
,
A.
,
1995
, “
Fast Cell-to-Cell Mapping (Path Integration) for Nonlinear White Noise and Poisson Driven Systems
,”
Struct. Saf.
,
17
(
3
), pp.
151
165
.10.1016/0167-4730(95)00006-P
25.
Yurchenko
,
D.
,
Naess
,
A.
, and
Alevras
,
P.
,
2013
, “
Pendulum's Rotational Motion Governed by a Stochastic Mathieu Equation
,”
Probab. Eng. Mech.
,
31
, pp.
12
18
.10.1016/j.probengmech.2012.10.004
26.
Chai
,
W.
,
Naess
,
A.
, and
Leira
,
B. J.
,
2016
, “
Stochastic Nonlinear Ship Rolling in Random Beam Seas by the Path Integration Method
,”
Probab. Eng. Mech.
,
44
, pp.
43
52
.10.1016/j.probengmech.2015.10.002
27.
Zhu
,
H.
,
Xu
,
Y.
,
Yu
,
Y.
, and
Xu
,
L.
,
2021
, “
Stationary Response of Nonlinear Vibration Energy Harvesters by Path Integration
,”
ASME J. Comput. Nonlinear Dyn.
,
16
(
5
), p.
051004
.10.1115/1.4050612
28.
Gammaitoni
,
L.
,
Hänggi
,
P.
,
Jung
,
P.
, and
Marchesoni
,
F.
,
1998
, “
Stochastic Resonance
,”
Rev. Mod. Phys.
,
70
(
1
), pp.
223
287
.10.1103/RevModPhys.70.223
29.
Eugene
,
W.
, and
Moshe
,
Z.
,
1965
, “
On the Relation Between Ordinary and Stochastic Differential Equations
,”
Int. J. Eng. Sci.
,
3
(
2
), pp.
213
229
.10.1016/0020-7225(65)90045-5
30.
Yong
,
Y.
, and
Lin
,
Y.-K.
,
1987
, “
Exact Stationary-Response Solution for Second Order Nonlinear Systems Under Parametric and External White-Noise Excitations
,”
ASME J. Appl. Mech.
,
54
(
2
), pp.
414
418
.10.1115/1.3173029
31.
Mo
,
E.
,
2008
, “
Nonlinear Stochastic Dynamics and Chaos by Numerical Path Integration
,” Ph.D. dissertation, Norwegian University of Science and Technology, Trondheim, Norway.
32.
Gaidai
,
O.
,
Dimentberg
,
M.
, and
Naess
,
A.
,
2018
, “
Rotating Shaft's Non-Linear Response Statistics Under Biaxial Random Excitation, by Path Integration
,”
Int. J. Mech. Sci.
,
142–143
, pp.
121
126
.10.1016/j.ijmecsci.2018.04.043
33.
Zhao
,
Y.
,
Lian
,
J.
,
Lian
,
C.
,
Dong
,
X.
,
Wang
,
H.
,
Liu
,
C.
,
Jiang
,
Q.
, and
Wang
,
P.
,
2019
, “
Stochastic Dynamic Analysis of an Offshore Wind Turbine Structure by the Path Integration Method
,”
Energies
,
12
(
16
), p.
3051
.10.3390/en12163051
34.
De Boor
,
C.
,
1986
, “
B(asic)-Spline Basics
,” Mathematics Research Center, University of Wisconsin–Madison, Madison, WI, Technical Report No. 2952.
35.
De Boor
,
C.
,
2005
,
Spline Toolbox for Use With MATLAB: User's Guide, Version 3
,
MathWorks
, Natick, MA.
36.
Anh
,
N.
, and
Hieu
,
N.
,
2012
, “
The Duffing Oscillator Under Combined Periodic and Random Excitations
,”
Probab. Eng. Mech.
,
30
, pp.
27
36
.10.1016/j.probengmech.2012.02.004
37.
Kang
,
Y.-M.
,
Xu
,
J.-X.
, and
Xie
,
Y.
,
2003
, “
Observing Stochastic Resonance in an Underdamped Bistable Duffing Oscillator by the Method of Moments
,”
Phys. Rev. E
,
68
(
3
), p.
036123
.10.1103/PhysRevE.68.036123
38.
Namachchivaya
,
N. S.
,
1990
, “
Stochastic Bifurcation
,”
Appl. Math. Comput.
,
38
(
2
), pp.
101
159
.10.1016/0096-3003(90)90051-4
You do not currently have access to this content.