Abstract

This paper is concerned with the approximate controllability of Sobolev-type (k,ψ)Hilfer fractional differential equations (FDEs) with control and Sobolev-type (k,ψ)Hilfer fractional initial conditions in Hilbert spaces. By means of two operators kSψα,β,kTψα and the kprobability density function, the definition of mild solutions for the studied problem was given. Then, via (k,ψ)Hilfer fractional derivative and by combining the techniques of fractional calculus and the fixed point theorem, we analyzed the existence and uniqueness of mild solutions. With the help of a Cauchy sequence and approximate techniques, we established some sufficient conditions for the approximate controllability of the proposed control system. Finally, an example is presented for the demonstration of obtained results.

References

1.
Benchohra
,
M.
,
Karapinar
,
E.
,
Lazreg
,
J. E.
, and
Salim
,
A.
,
2023
,
Advanced Topics in Fractional Differential Equations: A Fixed Point Approach
,
Springer Nature
, Switzerland.
2.
Diethelm
,
K.
,
2010
,
The Analysis of Fractional Differential Equations
(Lecture Notes in Mathematics),
Springer
,
New York
.
3.
Kilbas
,
A. A.
,
Srivastava
,
H. M.
, and
Trujillo
,
J. J.
,
2006
,
Theory and Applications of Fractional Differential Equations
,
Elsevier
, Amsterdam, The Netherlands.
4.
Lakshmikantham
,
V.
,
Leela
,
S.
, and
Devi
,
J. V.
,
2009
,
Theory of Fractional Dynamic Systems
,
Cambridge Scientific Publishers
,
Cambridge, UK
.
5.
Miller
,
K. S.
, and
Ross
,
B.
,
1993
,
An Introduction to the Fractional Calculus and Differential Equations
,
Wiley
,
New York
.
6.
Podlubny
,
I.
,
1999
,
Fractional Differential Equations
,
Academic Press
,
New York
.
7.
Samko
,
S. G.
,
Kilbas
,
A. A.
, and
Marichev
,
O. I.
,
1993
,
Fractional Integrals and Derivatives
,
Gordon and Breach
,
Yverdon
, Switzerland.
8.
Hilfer
,
R.
,
2000
,
Applications of Fractional Calculus in Physics
,
World Scientific
,
Singapore
.
9.
Karthikeyan
,
K.
,
Debbouche
,
A.
, and
Torres
,
D. F. M.
,
2021
, “
Analysis of Hilfer Fractional Integro-Differential Equations With Almost Sectorial Operators
,”
Fractal Fractional
,
5
(
1
), p.
22
.10.3390/fractalfract5010022
10.
Kumar
,
A.
,
Jeet
,
K.
, and
Vats
,
R. K.
,
2022
, “
Controllability of Hilfer Fractional Integro-Differential Equations of Sobolev-Type With a Nonlocal Condition in a Banach Space
,”
Evol. Equations Control Theory
,
11
(
2
), pp.
605
619
.10.3934/eect.2021016
11.
Pourhadi
,
E.
,
Saadati
,
R.
, and
Nieto
,
J. J.
,
2023
, “
On the Attractivity of the Solutions of a Problem Involving Hilfer Fractional Derivative Via the Measure of Noncompactness
,”
Fixed Point Theory
,
24
(
1
), pp.
343
366
.10.24193/fpt-ro.2023.1.19
12.
Vijayakumar
,
V.
, and
Udhayakumar
,
R.
,
2021
, “
A new exploration on existence of Sobolev-type Hilfer fractional neutral integro-differential equations with infinite delay
,”
Numer. Methods Partial Differ. Equ
, 37(1), pp.
750
766
.10.1002/num.22550
13.
Yang
,
M.
, and
Wang
,
Q. R.
,
2017
, “
Approximate Controllability of Hilfer Fractional Differential Inclusions With Nonlocal Conditions
,”
Math. Methods Appl. Sci.
,
40
(
4
), pp.
1126
1138
.10.1002/mma.4040
14.
Wang
,
J.
, and
Zhang
,
Y.
,
2015
, “
Nonlocal Initial Value Problems for Differential Equations With Hilfer Fractional Derivative
,”
Appl. Math. Comput.
,
266
, pp.
850
859
.10.1016/j.amc.2015.05.144
15.
Sousa
,
J. V. D. C.
, and
Capelas de Oliveira
,
E.
,
2018
, “
On the ψ-Hilfer Fractional Derivative
,”
Commun. Nonlinear Sci. Numer. Simul.
,
60
, pp.
72
91
.10.1016/j.cnsns.2018.01.005
16.
Guechi
,
S.
,
Dhayal
,
R.
,
Debbouche
,
A.
, and
Malik
,
M.
,
2021
, “
Analysis and Optimal Control of φ Hilfer Fractional Semilinear Equations Involving Nonlocal Impulsive Conditions
,”
Symmetry
,
13
(
11
), p.
2084
.10.3390/sym13112084
17.
Kucche
,
K. D.
,
Kharade
,
J. P.
, and
Sousa
,
J. V. D. C.
,
2020
, “
On the Nonlinear Impulsive ψ-Hilfer Fractional Differential Equations
,”
Math. Model. Anal.
,
25
(
4
), pp.
642
660
.10.3846/mma.2020.11445
18.
Sousa
,
J. V. D. C.
,
Benchohra
,
M.
, and
N'Guéré Kata
,
G. M.
,
2020
, “
Attractivity for Differential Equations of Fractional Order and ψ-Hilfer Type
,”
Fractional Calculus Appl. Anal.
,
23
(
4
), pp.
1188
1207
.10.1515/fca-2020-0060
19.
Sousa
,
J. V. D. C.
,
Kucche
,
K. D.
, and
Capelas de Oliveira
,
E.
,
2019
, “
On the Ulam-Hyers Stabilities of the Solutions of ψHilfer Fractional Differential Equation With Abstract Volterra Operator
,”
Math. Methods Appl. Sci.
,
42
(
9
), pp.
3021
3032
.10.1002/mma.5562
20.
Sousa
,
J. V. D. C.
,
Kucche
,
K. D.
, and
Capelas de Oliveira
,
E.
,
2019
, “
Stability of ψHilfer Impulsive Fractional Differential Equations
,”
Appl. Math. Lett.
,
88
, pp.
73
80
.10.1016/j.aml.2018.08.013
21.
Diaz
,
R.
, and
Teruel
,
C.
,
2005
, “
q,kGeneralized Gamma and Beta Functions
,”
J. Nonlinear Math. Phys.
,
12
, pp.
118
134
.10.2991/jnmp.2005.12.1.10
22.
Kucche
,
K. D.
, and
Mali
,
A. D.
,
2021
, “
On the Nonlinear (k,ψ)Hilfer Fractional Differential Equations
,”
Chaos, Solitons Fractals
,
152
, p.
111335
.10.1016/j.chaos.2021.111335
23.
Kharade
,
J. P.
, and
Kucche
,
K. D.
,
2023
, “
On the (k,ψ)Hilfer Nonlinear Impulsive Fractional Differential Equations
,”
Math. Methods Appl. Sci.
,
46
(
15
), pp.
16282
16304
.10.1002/mma.9450
24.
Ledesma
,
C. E. T.
, and
Nyamoradi
,
N.
,
2022
, “
(k,ψ)Hilfer Variational Problem
,”
J. Elliptic Parabolic Equations
,
8
(
2
), pp.
681
709
.10.1007/s41808-022-00173-w
25.
Lazreg
,
J. E.
,
Benchohra
,
M.
, and
Salim
,
A.
,
2022
, “
Existence and Ulam Stability of k-Generalized ψHilfer Fractional Problem
,”
J. Innovative Appl. Math. Comput. Sci.
,
2
(
2
), pp.
1
13
.10.58205/jiamcs.v2i2.19
26.
Başci
,
Y.
,
Misir
,
A.
, and
Öğrekçi
,
S.
,
2023
, “
Generalized Derivatives and Laplace Transform in (k,ψ)Hilfer Form
,”
Math. Methods Appl. Sci.
,
46
(
9
), pp.
10400
10420
.10.1002/mma.9129
27.
Bora
,
S. N.
, and
Roy
,
B.
,
2021
, “
Approximate Controllability of a Class of Semilinear Hilfer Fractional Differential Equations
,”
Results Math.
,
76
(
4
), pp.
1
20
.
28.
Debbouche
,
A.
, and
Antonov
,
V.
,
2017
, “
Approximate Controllability of Semilinear Hilfer Fractional Differential Inclusions With Impulsive Control Inclusion Conditions in Banach Spaces
,”
Chaos, Solitons Fractals
,
102
, pp.
140
148
.10.1016/j.chaos.2017.03.023
29.
Debbouche
,
A.
, and
Nieto
,
J. J.
,
2014
, “
Sobolev Type Fractional Abstract Evolution Equations With Nonlocal Conditions and Optimal Multi-Controls
,”
Appl. Math. Comput.
,
245
, pp.
74
85
.10.1016/j.amc.2014.07.073
30.
Jeet
,
K.
,
Kumar
,
A.
, and
Vats
,
R. K.
,
2024
, “
Approximate Controllability of Neutral Hilfer Fractional Differential Equations of Sobolev-Type in a Hilbert Space
,”
Math. Control Relat. Fields
,
14
(
2
), pp.
493
512
.10.3934/mcrf.2023013
31.
Johnson
,
M.
, and
Vijayakumar
,
V.
,
2023
, “
Optimal Control Results for Sobolev-Type Fractional Stochastic Volterra-Fredholm Integrodifferential Systems of Order ϑ(1,2) Via Sectorial Operators
,”
Numer. Funct. Anal. Optim.
,
44
(
6
), pp.
439
460
.10.1080/01630563.2023.2180645
32.
Kerboua
,
M.
,
2018
, “
Approximate Controllability of Fractional Neutral Stochastic Evolution Equations in Hilbert Spaces With Fractional Brownian Motion
,”
Stochastic Anal. Appl.
,
36
(
2
), pp.
209
223
.
33.
Kerboua
,
M.
,
Ellaggoune
,
F.
, and
Baleanu
,
D.
,
2018
, “
Stochastic Fractional Perturbed Control Systems With Fractional Brownian Motion and Sobolev Stochastic Non Local Conditions
,”
Collect. Math.
,
69
(
2
), pp.
283
296
.
34.
Vijayakumar
,
V.
, and
Udhayakumar
,
R.
,
2020
, “
Results on Approximate Controllability for Non-Densely Defined Hilfer Fractional Differential System With Infinite Delay
,”
Chaos, Solitons Fractals
,
139
, p.
110019
.10.1016/j.chaos.2020.110019
35.
Vijayakumar
,
V.
,
Udhayakumar
,
R.
,
Zhou
,
Y.
, and
Sakthivel
,
N.
,
2023
, “
Approximate Controllability Results for Sobolev-Type Delay Differential System of Fractional Order Without Uniqueness
,”
Numer. Methods Partial Differ. Equations
,
39
(
5
), pp.
3479
3498
.10.1002/num.22642
36.
Wang
,
H.
, and
Ku
,
J.
,
2023
, “
Controllability of Hilfer Fractional Langevin Evolution Equations
,”
Front. Appl. Math. Stat.
,
9
, p.
1191661
.10.3389/fams.2023.1191661
37.
Zorlu
,
S.
, and
Gudaimat
,
A.
,
2023
, “
Approximate Controllability of Fractional Evolution Equations With ψCaputo Derivative
,”
Symmetry
,
15
(
5
), p.
1050
.10.3390/sym15051050
38.
Kerboua
,
M.
,
Bouacida
,
I.
, and
Segni
,
S.
,
2023
, “
Null Controllability of ψHilfer Implicit Fractional Integro-Differential Equations With ψHilfer Fractional Nonlocal Conditions
,”
Evol. Equations Control Theory
,
12
(
6
), pp.
1473
1491
.10.3934/eect.2023021
39.
Dhayal
,
R.
, and
Zhu
,
Q.
,
2023
, “
Stability and Controllability Results of ψHilfer Fractional Integro-Differential Systems Under the Influence of Impulses
,”
Chaos, Solitons Fractals
,
168
, p.
113105
.10.1016/j.chaos.2023.113105
40.
Bouacida
,
I.
,
Kerboua
,
M.
, and
Segni
,
S.
,
2023
, “
Controllability Results for Sobolev Type ψHilfer Fractional Backward Perturbed Integro-Differential Equations in Hilbert Space
,”
Evol. Equations Control Theory
,
12
(
1
), pp.
213
229
.10.3934/eect.2022028
41.
Varun Bose
,
C. S.
,
Udhayakumar
,
R.
,
Velmurugan
,
S.
,
Saradha
,
M.
, and
Almarri
,
B.
,
2023
, “
Approximate Controllability of ψHilfer Fractional Neutral Differential Equation With Infinite Delay
,”
Fractal Fractional
,
7
(
7
), p.
537
.10.3390/fractalfract7070537
42.
Sahijwani
,
L.
, and
Sukavanam
,
N.
,
2023
, “
Approximate Controllability for Riemann-Liouville Fractional Differential Equations
,”
Int. J. Optim. Control: Theor. Appl.
,
13
(
1
), pp.
59
67
.
43.
Pandey
,
R.
,
Shukla
,
C.
,
Shukla
,
A.
,
Upadhyay
,
A.
, and
Singh
,
A. K.
,
2023
, “
A New Approach on Approximate Controllability of Sobolev-Type Hilfer Fractional Differential Equations
,”
Int. J. Optim. Control, Theor. Appl. (IJOCTA)
,
13
(
1
), pp.
130
138
.10.11121/ijocta.2023.1256
44.
Wen
,
Y.
, and
Xi
,
X. X.
,
2022
, “
Complete Controllability of Nonlinear Fractional Neutral Functional Differential Equations
,”
Adv. Contin. Discrete Models
,
2022
(
1
), pp.
1
11
.
45.
Wen
,
Y.
, and
Zhou
,
X. F.
,
2018
, “
Approximate Controllability and Complete Controllability of Semilinear Fractional Functional Differential Systems With Control
,”
Adv. Differ. Equations
,
2018
(
1
), pp.
1
18
.
46.
Mainardi
,
F.
,
Paradisi
,
P.
, and
Gorenflo
,
R.
,
2007
, “
Probability Distributions Generated by Fractional Diffusion Equations
,” preprint
arXiv:0704.0320
.https://appliedmath.brown.edu/sites/default/files/fractional/33%20Probabilitydistributions.pdf
You do not currently have access to this content.