Abstract

Numerous recent works have established the potential of various types of metamaterials for simultaneous vibration control and energy harvesting. In this paper, we investigate a weakly nonlinear metamaterial with electromechanical (EM) local resonators coupled to a resistance-inductance shunt circuit, a system with no previous examination in the literature. An analytical solution is developed for the system, using the perturbation method of multiple scales, and validated through direct numerical integration. The resulting linear and nonlinear band structures are used for parametric analysis of the system, focusing on the effect of resonator and shunt circuit parameters on band gap formation and vibration attenuation. This band structure analysis informs further study of the system through wavepacket excitation as well as spectro-spatial analysis. The voltage response of the system is studied through spatial profiles and spectrograms to observe the effects of shunt inductance, nonlinearity, and their interactions. Results describe the impact of adding a shunted inductor, including significant changes to the band structure; multiple methods of tuning band gaps and pass bands of the system; and changes to wave propagation and voltage response. The results demonstrate the flexibility of the proposed metamaterial and its potential for both vibration control and energy harvesting, specifically compared to a previously studied system with resistance-only shunt.

References

1.
Hussein
,
M. I.
,
Leamy
,
M. J.
, and
Ruzzene
,
M.
,
2014
, “
Dynamics of Phononic Materials and Structures: Historical Origins, Recent Progress, and Future Outlook
,”
ASME Appl. Mech. Rev.
,
66
(
4
), p.
040802
.10.1115/1.4026911
2.
Kadic
,
M.
,
Bückmann
,
T.
,
Schittny
,
R.
, and
Wegener
,
M.
,
2013
, “
Flexible Mechanical Metamaterials
,”
Rep. Prog. Phys.
,
76
(
12
), p.
126501
.10.1088/0034-4885/76/12/126501
3.
Kivshar
,
Y.
, and
Flytzanis
,
N.
,
1992
, “
Gap Solitons in Diatomic Lattices
,”
Phys. Rev. A
,
46
(
12
), pp.
7972
7978
.10.1103/PhysRevA.46.7972
4.
Liang
,
B.
,
Yuan
,
B.
, and
Cheng
,
J. C.
,
2009
, “
Acoustic Diode: Rectification of Acoustic Energy Flux in One-Dimensional Systems
,”
Phys. Rev. Lett.
,
103
(
10
), p.
104301
.10.1103/PhysRevLett.103.104301
5.
Cai
,
W.
, and
Shalaev
,
V. M.
,
2010
,
Optical Metamaterials
, Vol.
10
,
Springer
,
Berlin, Germany
.
6.
Bertoldi
,
K.
,
Vitelli
,
V.
,
Christensen
,
J.
, and
van Hecke
,
M.
,
2017
, “
Metamaterials Beyond Electromagnetism
,”
Nat. Rev. Mater.
,
2
(
11
), p.
17066
.10.1038/natrevmats.2017.66
7.
Christensen
,
J.
,
Kadic
,
M.
,
Wegener
,
M.
,
Kraft
,
O.
, and
Wegener
,
M.
,
2015
, “
Vibrant Times for Mechanical Metamaterials
,”
MRS Commun.
,
5
(
3
), pp.
453
462
.10.1557/mrc.2015.51
8.
Sigalas
,
M. M.
, and
Economou
,
E. N.
,
1992
, “
Elastic and Acoustic Wave Band Structure
,”
J. Sound Vib.
,
158
(
2
), pp.
377
382
.10.1016/0022-460X(92)90059-7
9.
Sigalas
,
M. M.
, and
Economou
,
E. N.
,
1993
, “
Band Structure of Elastic Waves in Two Dimensional Systems
,”
Solid State Commun.
,
86
(
3
), pp.
141
143
.10.1016/0038-1098(93)90888-T
10.
Kushwaha
,
M. S.
,
Halevi
,
P.
,
Dobrzynski
,
L.
, and
Djafari-Rouhani
,
B.
,
1993
, “
Acoustic Band Structure of Periodic Elastic Composites
,”
Phys. Rev. Lett.
,
71
(
13
), pp.
2022
2025
.10.1103/PhysRevLett.71.2022
11.
Kushwaha
,
M. S.
,
1996
, “
Classical Band Structure of Periodic Elastic Composites
,”
Int. J. Mod. Phys. B
,
10
(
09
), pp.
977
1094
.10.1142/S0217979296000398
12.
Vasseur
,
J.
,
Djafari-Rouhani
,
B.
,
Dobrzynski
,
L.
,
Kushwaha
,
M.
, and
Halevi
,
P.
,
1994
, “
Complete Acoustic Band Gaps in Periodic Fibre Reinforced Composite Materials: The Carbon/Epoxy Composite and Some Metallic Systems
,”
J. Phys.: Condens. Matter
,
6
(
42
), pp.
8759
8770
.10.1088/0953-8984/6/42/008
13.
Liu
,
Z.
,
Zhang
,
X.
,
Mao
,
Y.
,
Zhu
,
Y.
,
Yang
,
Z.
,
Chan
,
C. T.
, and
Sheng
,
P.
,
2000
, “
Locally Resonant Sonic Materials
,”
Science
,
289
(
5485
), pp.
1734
1736
.10.1126/science.289.5485.1734
14.
Liu
,
L.
, and
Hussein
,
M. I.
,
2012
, “
Wave Motion in Periodic Flexural Beams and Characterization of the Transition Between Bragg Scattering and Local Resonance
,”
ASME J. Appl. Mech.
,
79
(
1
), p.
011003
.10.1115/1.4004592
15.
Achaoui
,
Y.
,
Laude
,
V.
,
Benchabane
,
S.
, and
Khelif
,
A.
,
2013
, “
Local Resonances in Phononic Crystals and in Random Arrangements of Pillars on a Surface
,”
J. Appl. Phys.
,
114
(
10
), p.
104503
.10.1063/1.4820928
16.
Zhu
,
R.
,
Liu
,
X.
,
Hu
,
G.
,
Sun
,
C.
, and
Huang
,
G.
,
2014
, “
A Chiral Elastic Metamaterial Beam for Broadband Vibration Suppression
,”
J. Sound Vib.
,
333
(
10
), pp.
2759
2773
.10.1016/j.jsv.2014.01.009
17.
Huang
,
G.
, and
Sun
,
C.
,
2010
, “
Band Gaps in a Multiresonator Acoustic Metamaterial
,”
ASME J. Vib. Acoust.
,
132
(
3
), p.
031003
.10.1115/1.4000784
18.
Bailey
,
T.
, and
Hubbard
,
J. J.
,
1985
, “
Distributed Piezoelectric-Polymer Active Vibration Control of a Cantilever Beam
,”
J. Guid., Control, Dyn.
,
8
(
5
), pp.
605
611
.10.2514/3.20029
19.
Hagood
,
N. W.
, and
von Flotow
,
A.
,
1991
, “
Damping of Structural Vibrations With Piezoelectric Materials and Passive Electrical Networks
,”
J. Sound Vib.
,
146
(
2
), pp.
243
268
.10.1016/0022-460X(91)90762-9
20.
Dosch
,
J. J.
,
Inman
,
D. J.
, and
Garcia
,
E.
,
1992
, “
A Self-Sensing Piezoelectric Actuator for Collocated Control
,”
J. Intell. Mater. Syst. Struct.
,
3
(
1
), pp.
166
185
.10.1177/1045389X9200300109
21.
Arafa
,
M.
, and
Baz
,
A.
,
2000
, “
Dynamics of Active Piezoelectric Damping Composites
,”
Composites. Part B
,
31
(
4
), pp.
255
264
.10.1016/S1359-8368(00)00020-2
22.
Lallart
,
M.
,
Yan
,
L.
,
Richard
,
C.
, and
Guyomar
,
D.
,
2016
, “
Damping of Periodic Bending Structures Featuring Nonlinearly Interfaced Piezoelectric Elements
,”
J. Vib. Control
,
22
(
18
), pp.
3930
3941
.10.1177/1077546314567724
23.
Bao
,
B.
,
Guyomar
,
D.
, and
Lallart
,
M.
,
2017
, “
Vibration Reduction for Smart Periodic Structures Via Periodic Piezoelectric Arrays With Nonlinear Interleaved-Switched Electronic Networks
,”
Mech. Syst. Signal Process.
,
82
, pp.
230
259
.10.1016/j.ymssp.2016.05.021
24.
Thorp
,
O.
,
Ruzzene
,
M.
, and
Baz
,
A.
,
2001
, “
Attenuation and Localization of Wave Propagation in Rods With Periodic Shunted Piezoelectric Patches
,”
Smart Mater. Struct.
,
10
(
5
), pp.
979
989
.10.1088/0964-1726/10/5/314
25.
Airoldi
,
L.
, and
Ruzzene
,
M.
,
2011
, “
Wave Propagation Control in Beams Through Periodic Multi-Branch Shunts
,”
J. Intell. Mater. Syst. Struct.
,
22
(
14
), pp.
1567
1579
.10.1177/1045389X11408372
26.
Casadei
,
F.
,
Delpero
,
T.
,
Bergamini
,
A.
,
Ermanni
,
P.
, and
Ruzzene
,
M.
,
2012
, “
Piezoelectric Resonator Arrays for Tunable Acoustic Waveguides and Metamaterials
,”
J. Appl. Phys.
,
112
(
6
), p.
064902
.10.1063/1.4752468
27.
Lesieutre
,
G. A.
,
1998
, “
Vibration Damping and Control Using Shunted Piezoelectric Materials
,”
Shock Vib. Dig.
,
30
(
3
), pp.
187
195
.10.1177/058310249803000301
28.
Abdelmoula
,
H.
, and
Abdelkefi
,
A.
,
2015
, “
Ultra-Wide Bandwidth Improvement of Piezoelectric Energy Harvesters Through Electrical Inductance Coupling
,”
Eur. Phys. J. Spec. Top.
,
224
(
14–15
), pp.
2733
2753
.10.1140/epjst/e2015-02586-4
29.
Park
,
C. H.
, and
Baz
,
A.
,
2005
, “
Vibration Control of Beams With Negative Capacitive Shunting of Interdigital Electrode Piezoceramics
,”
J. Vib. Control
,
11
(
3
), pp.
331
346
.10.1177/107754605040949
30.
Beck
,
B. S.
,
Cunefare
,
K. A.
,
Ruzzene
,
M.
, and
Collet
,
M.
,
2011
, “
Experimental Analysis of a Cantilever Beam With a Shunted Piezoelectric Periodic Array
,”
J. Intell. Mater. Syst. Struct.
,
22
(
11
), pp.
1177
1187
.10.1177/1045389X11411119
31.
Airoldi
,
L.
, and
Ruzzene
,
M.
,
2011
, “
Design of Tunable Acoustic Metamaterials Through Periodic Arrays of Resonant Shunted Piezos
,”
New J. Phys.
,
13
(
11
), p.
113010
.10.1088/1367-2630/13/11/113010
32.
Wang
,
G.
, and
Chen
,
S.
,
2015
, “
Large Low-Frequency Vibration Attenuation Induced by Arrays of Piezoelectric Patches Shunted With Amplifier-Resonator Feedback Circuits
,”
Smart Mater. Struct.
,
25
(
1
), p.
015004
.10.1088/0964-1726/25/1/015004
33.
Parra
,
E. A. F.
,
Bergamini
,
A.
,
Lossouarn
,
B.
,
van Damme
,
B.
,
Cenedese
,
M.
, and
Ermanni
,
P.
,
2017
, “
Bandgap Control With Local and Interconnected LC Piezoelectric Shunts
,”
Appl. Phys. Lett.
,
111
(
11
), p.
111902
.10.1063/1.4994779
34.
Hu
,
G.
,
Tang
,
L.
,
Banerjee
,
A.
, and
Das
,
R.
,
2017
, “
Metastructure With Piezoelectric Element for Simultaneous Vibration Suppression and Energy Harvesting
,”
ASME J. Vib. Acoust.
,
139
(
1
), p.
011012
.10.1115/1.4034770
35.
Tang
,
L.
, and
Yang
,
Y.
,
2012
, “
A Multiple-Degree-of-Freedom Piezoelectric Energy Harvesting Model
,”
J. Intell. Mater. Syst. Struct.
,
23
(
14
), pp.
1631
1647
.10.1177/1045389X12449920
36.
Li
,
Y.
,
Baker
,
E.
,
Reissman
,
T.
,
Sun
,
C.
, and
Liu
,
W. K.
,
2017
, “
Design of Mechanical Metamaterials for Simultaneous Vibration Isolation and Energy Harvesting
,”
Appl. Phys. Lett.
,
111
(
25
), p.
251903
.10.1063/1.5008674
37.
Hu
,
G.
,
Tang
,
L.
, and
Das
,
R.
,
2018
, “
Internally Coupled Metamaterial Beam for Simultaneous Vibration Suppression and Low Frequency Energy Harvesting
,”
J. Appl. Phys.
,
123
(
5
), p.
055107
.10.1063/1.5011999
38.
Sugino
,
C.
,
Leadenham
,
S.
,
Ruzzene
,
M.
, and
Erturk
,
A.
,
2017
, “
An Investigation of Electroelastic Bandgap Formation in Locally Resonant Piezoelectric Metastructures
,”
Smart Mater. Struct.
,
26
(
5
), p.
055029
.10.1088/1361-665X/aa6671
39.
Erturk
,
A.
, and
Inman
,
D. J.
,
2011
,
Piezoelectric Energy Harvesting
,
Wiley
,
Hoboken, NJ
.
40.
Bukhari
,
M. A.
, and
Barry
,
O.
,
2020
, “
Simultaneous Energy Harvesting and Vibration Control in a Nonlinear Metastructure: A Spectro-Spatial Analysis
,”
J. Sound Vib.
,
473
, p.
115215
.10.1016/j.jsv.2020.115215
41.
Barry
,
O. R.
,
Oguamanam
,
D. C. D.
, and
Zu
,
J. W.
,
2014
, “
Nonlinear Vibration of an Axially Loaded Beam Carrying Multiple Mass–Spring–Damper Systems
,”
Nonlinear Dyn.
,
77
(
4
), pp.
1597
1608
.10.1007/s11071-014-1402-5
42.
Bukhari
,
M. A.
, and
Barry
,
O. R.
,
2019
, “
Exact Nonlinear Dynamic Analysis of a Beam With a Nonlinear Vibration Absorber and With Various Boundary Conditions
,”
ASME J. Comput. Nonlinear Dyn.
,
15
(
1
), p.
011003
.10.1115/1.4045287
43.
Mojahed
,
A.
,
Bunyan
,
J.
,
Tawfick
,
S.
, and
Vakakis
,
A. F.
,
2019
, “
Tunable Acoustic Nonreciprocity in Strongly Nonlinear Waveguides With Asymmetry
,”
Phys. Rev. Appl.
,
12
(
3
), p.
034033
.10.1103/PhysRevApplied.12.034033
44.
Manktelow
,
K. L.
,
Leamy
,
M. J.
, and
Ruzzene
,
M.
,
2014
, “
Analysis and Experimental Estimation of Nonlinear Dispersion in a Periodic String
,”
ASME J. Vib. Acoust.
,
136
(
3
), p.
031016
.10.1115/1.4027137
45.
Ganesh
,
R.
, and
Gonella
,
S.
,
2016
, “
Experimental Evidence of Directivity-Enhancing Mechanisms in Nonlinear Lattices
,”
Appl. Phys. Lett.
,
110
(
8
), p.
084101
.10.1063/1.4976805
46.
Høgsberg
,
J.
, and
Krenk
,
S.
,
2017
, “
Calibration of Piezoelectric RL Shunts With Explicit Residual Mode Correction
,”
J. Sound Vib.
,
386
, pp.
65
81
.10.1016/j.jsv.2016.08.028
47.
Nayfeh
,
A. H.
,
2011
,
Introduction to Perturbation Techniques
,
Wiley
,
Hoboken, NJ
.
48.
Narisetti
,
R. K.
,
Leamy
,
M. J.
, and
Ruzzene
,
M.
,
2010
, “
A Perturbation Approach for Predicting Wave Propagation in One-Dimensional Nonlinear Periodic Structures
,”
ASME J. Vib. Acoust.
,
132
(
3
), p.
031001
.10.1115/1.4000775
49.
Zhou
,
W. J.
,
Li
,
X.
,
Wang
,
Y.
,
Chen
,
W.
, and
Huang
,
G.
,
2018
, “
Spectro-Spatial Analysis of Wave Packet Propagation in Nonlinear Acoustic Metamaterials
,”
J. Sound Vib.
,
413
, pp.
250
269
.10.1016/j.jsv.2017.10.023
50.
Thomas
,
O.
,
Ducarne
,
J.
, and
Deü
,
J.-F.
,
2011
, “
Performance of Piezoelectric Shunts for Vibration Reduction
,”
Smart Mater. Struct.
,
21
(
1
), p.
015008
.10.1088/0964-1726/21/1/015008
51.
Hollkamp
,
J. J.
,
1994
, “
Multimodal Passive Vibration Suppression With Piezoelectric Materials and Resonant Shunts
,”
J. Intell. Mater. Syst. Struct.
,
5
(
1
), pp.
49
57
.10.1177/1045389X9400500106
52.
Marakakis
,
K.
,
Tairidis
,
G. K.
,
Koutsianitis
,
P.
, and
Stavroulakis
,
G. E.
,
2019
, “
Shunt Piezoelectric Systems for Noise and Vibration Control: A Review
,”
Front. Built Environ.
,
5
, p.
64
.10.3389/fbuil.2019.00064
53.
Inman
,
D. J.
,
1994
,
Engineering Vibration
,
Prentice Hall
,
Hoboken, NJ
.
54.
Bukhari
,
M. A.
, and
Barry
,
O.
,
2020
, “
Spectro-Spatial Analyses of a Nonlinear Metamaterial With Multiple Nonlinear Local Resonators
,”
Nonlinear Dyn.
,
99
(
2
), pp.
1539
1560
.10.1007/s11071-019-05373-z
55.
Ganesh
,
R.
, and
Gonella
,
S.
,
2013
, “
Spectro-Spatial Wave Features as Detectors and Classifiers of Nonlinearity in Periodic Chains
,”
Wave Motion
,
50
(
5
), p.
994
.10.1016/j.wavemoti.2013.05.002
You do not currently have access to this content.