Abstract

To deeply ascertain the transient extensive deformation process experienced by vehicle surface sealing band under a specified initial impact load within an innovative two-stage propulsion pattern, a sophisticated three-dimensional comprehensive dynamics model coupled with multitype propellant combustion theory and Arbitrary Lagrangian–Eulerian (ALE) algorithm is established, where VanLeer transport algorithm is applied to facilitate information exchange across computational grids. Following the validation of model rationality by comparing the results of 40 mm propulsion system dynamic impact experiment, numerical simulation is subsequently conducted to analyze the stress–strain characteristics of sealing band material and the mechanical mechanisms of interaction with the steel slope. The simulation results reveal that the dynamic interaction process spans a duration of 2.2 ms, during which the projectile motion transits through three distinct stages: deceleration, rebound, and acceleration. Throughout the deceleration stage, the material undergoes radial deformation and axial stress distribution as a result of the combined influence of extrusion force and friction force, with the peak surface stress reaching 400 MPa. As the projectile undergoes rebound, the front cone section of the material experiences shear fracture, leading to diverse shear conditions in the material surrounding the fractured elements. During the dynamic acceleration squeezing process, there is a progressive sequential failure of the material, propagating from the front to the back, with the proportion of mass experiencing failure reaching 14.8%. The conclusions obtained hold significant implications for the two-stage propulsion system.

References

1.
Jin
,
Z. M.
,
2004
,
Interior Ballistics of Guns
,
Beijing Institute of Technology Press
,
Beijing
.
2.
Zhang
,
H.
,
Lu
,
X.
,
Yu
,
Y. G.
, and
Zhou
,
Y. H.
,
2006
, “
Design for the Seal System and Charge of a CTA Gun
,”
Acta Armamentarii
,
27
(
4
), pp.
630
633
.https://link.oversea.cnki.net/doi/10.3321/j.issn:1000-1093.2006.04.012
3.
Wang
,
J. G.
,
Yu
,
Y. G.
,
Zhou
,
L. L.
, and
Ye
,
R.
,
2018
, “
Numerical Simulation and Optimized Design of Cased Telescoped Ammunition Interior Ballistic
,”
Def. Technol.
,
14
(
2
), pp.
119
125
.10.1016/j.dt.2017.11.006
4.
He
,
X. J.
, and
Li
,
C.
,
2023
, “
Study on Optimization of Interior Ballistic Performance of Cased Telescoped Ammunition Based on Improved Firefly Algorithm
,”
Propellants, Explos. Pyrotech.
,
48
(
2
), p.
e202200254
.10.1002/prep.202200254
5.
Lu
,
X.
,
Zhou
,
Y. H.
, and
Yu
,
Y. G.
,
2010
, “
Experimental Study and Numerical Simulation of Propellant Ignition and Combustion for Cased Telescoped Ammunition in Chamber
,”
ASME J. Appl. Mech.
,
77
(
5
), p.
051402
.10.1115/1.4001560
6.
Jang
,
J. S.
,
Oh
,
S. H.
, and
Roh
,
T. S.
,
2016
, “
Development of Three-Dimensional Numerical Model for Combustion-Flow in Interior Ballistics
,”
J. Mech. Sci. Technol.
,
30
(
4
), pp.
1631
1637
.10.1007/s12206-016-0319-y
7.
Montgomery
,
R. S.
,
1975
, “
Interaction of Copper-Containing Rotating Band Metal With Gun Bores at the Environment Present in a Gun Tube
,”
Wear
,
33
(
1
), pp.
109
128
.10.1016/0043-1648(75)90228-8
8.
Montgomery
,
R. S.
,
1976
, “
Surface Melting of Rotating Bands
,”
Wear
,
38
(
2
), pp.
235
243
.10.1016/0043-1648(76)90073-9
9.
Wu
,
B.
,
Fang
,
L. H.
,
Chen
,
X. L.
,
Zou
,
Z. Q.
,
Yu
,
X. H.
, and
Chen
,
G.
,
2014a
, “
Fabricating Aluminum Bronze Rotating Band for Large-Caliber Projectiles by High Velocity Arc Spraying
,”
J. Therm. Spray Technol.
,
23
(
3
), pp.
447
455
.10.1007/s11666-013-0010-0
10.
Wu
,
B.
,
Zheng
,
J.
,
Tian
,
Q. T.
,
Zou
,
Z. Q.
,
Yu
,
X. H.
, and
Zhang
,
K. S.
,
2014b
, “
Tribology of Rotating Band and Gun Barrel During Engraving Process Under Quasi-Static and Dynamic Loading
,”
Friction
,
2
(
4
), pp.
330
342
.10.1007/s40544-014-0061-3
11.
Wu
,
B.
,
Fang
,
L. H.
,
Zheng
,
J.
,
Yu
,
X. H.
,
Jiang
,
K.
,
Wang
,
T.
,
Hu
,
L. M.
, and
Chen
,
Y. L.
,
2019
, “
Strain Hardening and Strain-Rate Effect in Friction Between Projectile and Barrel During Engraving Process
,”
Tribol. Lett.
,
67
(
2
), p.
39
.10.1007/s11249-019-1151-1
12.
Sun
,
H. Y.
,
Ma
,
J. S.
,
Yao
,
J. J.
,
Liu
,
H. P.
, and
Li
,
W.
,
2010
, “
Dynamic Analysis on the Rotating Band's Engraving Process
,”
Adv. Mater. Res.
,
139–141
, pp.
1285
1288
.10.4028/www.scientific.net/AMR.139-141.1285
13.
Sun
,
Q. Z.
,
Yang
,
G. L.
, and
Ge
,
J. L.
,
2017
, “
Modeling and Simulation on Engraving Process of Projectile Rotating Band Under Different Charge Cases
,”
J. Vib. Control
,
23
(
6
), pp.
1044
1054
.10.1177/1077546315587806
14.
Ding
,
C. J.
,
Liu
,
N.
, and
Zhang
,
X. Y.
,
2017
, “
A Mesh Generation Method for Worn Gun Barrel and Its Application in Projectile-Barrel Interaction Analysis
,”
Finite Elem. Anal. Des.
,
124
, pp.
22
32
.10.1016/j.finel.2016.10.003
15.
Hu
,
C. B.
, and
Zhang
,
X. B.
,
2018
, “
A Fluid-Structure Coupling Method to Obtain Parameter Distributions in a Combustion Chamber With Moving Boundaries
,”
Appl. Therm. Eng.
,
141
, pp.
1048
1054
.10.1016/j.applthermaleng.2018.06.063
16.
Hu
,
C. B.
, and
Zhang
,
X. B.
,
2019
, “
Influence of Multiple Structural Parameters on Interior Ballistics Based on Orthogonal Test Methods
,”
Def. Technol.
,
15
(
5
), pp.
690
697
.10.1016/j.dt.2019.06.014
17.
Xin
,
T.
,
Yang
,
G.
,
Xu
,
F.
,
Sun
,
Q.
, and
Minak
,
A.
,
2021
, “
Modeling, Simulation and Uncertain Optimization of the Gun Engraving System
,”
Mathematics
,
9
(
4
), p.
398
.10.3390/math9040398
18.
Xue
,
T.
,
Zhang
,
X. B.
, and
Cui
,
D. H.
,
2014
, “
Dynamic Analysis of a Guided Projectile During Engraving Process
,”
Def. Technol.
,
10
(
2
), pp.
111
118
.10.1016/j.dt.2014.05.003
19.
Cheng
,
S. S.
,
Tao
,
R. Y.
,
Wang
,
H.
,
Xue
,
S.
, and
Lin
,
Q. Y.
,
2021
, “
Dampling Characteristics of Projectile in Engraving Process of Nylon Sealing Band
,”
Acta Armamentarii
,
42
(
9
), pp.
1847
1857
.https://link.oversea.cnki.net/doi/10.3969/j.issn.1000-1093.2021.09.005
20.
Li
,
Z.
,
Ge
,
J. L.
,
Yang
,
G. L.
, and
Tang
,
J.
,
2015
, “
Simulation of Engraving Process of Large-Caliber Artillery Using Coupled Eulerian-Lagrangian Method
,”
Vibroeng. Proc.
,
5
, pp.
21
26
.https://www.extrica.com/article/16215
21.
Li
,
Z.
,
Ge
,
J. L.
,
Yang
,
G. L.
, and
Tang
,
J.
,
2016
, “
Modeling and Dynamic Simulation on Engraving Process of Rotating Band Into Rifled Barrel Using Three Different Numerical Methods
,”
J. Vibroeng.
,
18
(
2
), pp.
768
780
.10.21595/jve.2016.16709
22.
Ghosh
,
S.
, and
Kikuchi
,
N.
,
1991
, “
An Arbitrary Lagrangian-Eulerian Finite Element Method for Large Deformation Analysis of Elastic-Viscoplastic Solids
,”
Comput. Methods Appl. Mech. Eng.
,
86
(
2
), pp.
127
188
.10.1016/0045-7825(91)90126-Q
23.
Nazem
,
M.
,
Sheng
,
D.
,
Carter
,
J. P.
, and
Sloan
,
S. W.
,
2008
, “
Arbitrary Lagrangian–Eulerian Method for Large-Strain Consolidation Problems
,”
Int. J. Numer. Anal. Methods Geomech.
,
32
(
9
), pp.
1023
1050
.10.1002/nag.657
24.
Nazem
,
M.
,
Carter
,
J. P.
, and
Airey
,
D. W.
,
2009
, “
Arbitrary Lagrangian–Eulerian Method for Dynamic Analysis of Geotechnical Problems
,”
Comput. Geotech.
,
36
(
4
), pp.
549
557
.10.1016/j.compgeo.2008.11.001
25.
Pascuzzo
,
A.
,
Greco
,
F.
,
Lonetti
,
P.
, and
Ammendolea
,
D.
,
2022
, “
Dynamic Fracture Analysis in Quasi-Brittle Materials Via a Finite Element Approach Based on the Combination of the ALE Formulation and M− Integral Method
,”
Eng. Failure Anal.
,
141
, p.
106627
.10.1016/j.engfailanal.2022.106627
26.
Guo
,
Q.
,
Yao
,
W. J.
,
Li
,
W. B.
, and
Gupta
,
N.
,
2021
, “
Constitutive Models for the Structural Analysis of Composite Materials for the Finite Element Analysis: A Review of Recent Practices
,”
Compos. Struct.
,
260
, p.
113267
.10.1016/j.compstruct.2020.113267
27.
Zhang
,
C. Y.
,
Zou
,
P.
,
Wang
,
Y. X.
,
Jiang
,
T. T.
,
Lin
,
H.
, and
Cao
,
P.
,
2020
, “
An Elasto-Visco-Plastic Model Based on Stress Functions for Deformation and Damage of Water-Saturated Rocks During the Freeze-Thaw Process
,”
Constr. Build. Mater.
,
250
, p.
118862
.10.1016/j.conbuildmat.2020.118862
28.
Belousov
,
D.
, and
Lisitsa
,
V.
,
2023
, “
Mimetic Finite Differences for Boundaries Misaligned With Grid Nodes
,”
J. Comput. Appl. Math.
,
428
, p.
115185
.10.1016/j.cam.2023.115185
29.
Wang
,
Z. J.
,
Fidkowski
,
K.
,
Abgrall
,
R.
,
Bassi
,
F.
,
Caraeni
,
D.
,
Cary
,
A.
,
Deconinck
,
H.
, et al.,
2013
, “
High-Order CFD Methods: Current Status and Perspective
,”
Int. J. Numer. Methods Fluids
,
72
(
8
), pp.
811
845
.10.1002/fld.3767
30.
Luo
,
Y. G.
,
Wang
,
P. F.
,
Jia
,
H. F.
, and
Huang
,
F. C.
,
2021
, “
Dynamic Characteristics Analysis of a Seal-Rotor System With Rub-Impact Fault
,”
ASME J. Comput. Nonlinear Dyn.
,
16
(
8
), p.
081003
.10.1115/1.4051185
31.
Yang
,
X.
,
Guo
,
Y. Z.
, and
Li
,
Y. L.
,
2023
, “
A New Ductile Failure Criterion With Stress Triaxiality and Lode Dependence
,”
Eng. Fract. Mech.
,
289
, p.
109394
.10.1016/j.engfracmech.2023.109394
32.
Chu
,
D. Y.
,
Li
,
X.
,
Liu
,
Z. L.
,
Cheng
,
J. B.
,
Wang
,
T.
,
Li
,
Z. J.
, and
Zhuang
,
Z.
,
2019
, “
A Unified Phase Field Damage Model for Modeling the Brittle-Ductile Dynamic Failure Mode Transition in Metals
,”
Eng. Fract. Mech.
,
212
, pp.
197
209
.10.1016/j.engfracmech.2019.03.031
33.
Wang
,
X. B.
,
Zhang
,
H. M.
, and
Dong
,
X. H.
,
2021
, “
A Ductile Fracture Model for AZ31B Considering Current Parameters in Electrically-Assisted Forming Process
,”
Eng. Failure Anal.
,
129
, p.
105681
.10.1016/j.engfailanal.2021.105681
34.
Lu
,
X.
,
Higuchi
,
R.
, and
Yokozeki
,
T.
,
2024
, “
Adaptive Implicit-Explicit Method for Robust and Efficient Failure Analysis of Composite Materials
,”
Composites, Part A
,
180
, p.
108093
.10.1016/j.compositesa.2024.108093
You do not currently have access to this content.