State space linearization using the concept of Brunovsky form and Lie derivative is applied to the case of a Hyperchaotic Lorentz System. It is observed that the necessary and sufficient conditions can be satisfied, the analytic form of the controller ‘u’ and the final form of the linearized equations can be obtained. Numerical simulation is used to ascertain the feasibility of the procedure in practice. It may be added that the case of an ordinary Lorentz equation is distinctively different as the controller is to be added in a different manner. The most important aspect of the present analysis is that the controller can be determined and not chosen ad hoc.
Issue Section:
Research Papers
References
1.
Pecora
, L. M.
, and Carroll
, T. L.
, 1990, “Synchronization in Chaotic Systems
,” Phys. Rev. Lett.
, 64
(8
), pp. 821
–824
.2.
Ott
, E.
, Grebogi
, C.
, and Yorke
, J. A.
, 1990, “Controlling Chaos
,” Phys. Rev. Lett.
, 64
, pp. 1196
–1199
.3.
Ren-hong
, L.
, and Wei-han
, T.
, 1998, “Nonlinear Control of Chaos
,” Chin. Phys. Lett.
, 15
(4
), p. 249
.4.
Roy
Chowdhury
, A.
, Saha
, P.
, and Banerjee
, S.
, 2001, “Control of Chaos in Laser Plasma Interaction
,” Chaos, Solitons Fractals
, 12
(13
), pp. 2421
–2426
.5.
John
, J. K.
, and Amritkar
, R. E.
, 1994, “Synchronization of Unstable Orbits using Adaptive Control
,” Phys. Rev. E
, 49
, pp. 4843
–4848
.6.
Huberman
, B. A.
, and Lumer
, E.
, 1990, “Dynamics of Adaptive Systems
,” IEEE Trans. Circuits Syst.,
, 37
, pp. 547
–550
.7.
Andrievskii
, B. R.
, and Fradkov
, A. L.
, 2003, “Control of Chaos: Methods and Applications. I. Methods
,” Autom. Remote Control (Engl. Transl.)
,, 64
, pp. 673
–713
.8.
Alvarez-Gallegos
, J.
, 1994, “Nonlinear Regulation of a Lorenz System by Feedback Linearization Techniques
,” Dyn. Cont.
, 4
, pp. 277
–298
.9.
Babloyantz
, A.
, Krishchenko
, A. P.
, and Nosov
, A.
, 1997, “Analysis and Stabilization of Nonlinear Chaotic Systems
,” Comput. Math. Appl.
, 34
(2-4
), pp. 355
–368
.10.
Chen
, L.-Q.
, and Liu
, Y.-Z.
, 1999, “A Modified Exact Linearization Control for Chaotic Oscillators
,” Nonlinear Dyn.
, 20
, pp. 309
–317
.11.
Yu
, X.
, 1997, “Variable Structure Control Approach for Controlling Chaos
. Chaos, Solitons Fractals
, 8
(9
), pp. 1577
–1586
.12.
Hou
, M.
, and Pugh
, A. C.
, 1997, “On Feedback Linearization Solution
,” Proceedings of the 5th IEEE Mediterranean Conference on Control and Systems
, July, 1997.13.
Brockett
, R. W.
, 1978, “Feedback Invariants for Nonlinear Systems
,” Proceedings of the Seventh Triennial World Congress
, June, 1978.14.
Slotine
, J.-J.
and Li
, W.
, 1991, Applied Nonlinear Control
, Prentice Hall
, New York
.Copyright © 2012
by American Society of Mechanical Engineers
You do not currently have access to this content.