A general methodology for the dynamic modeling and analysis of planar multibody systems with multiple clearance joints is presented. The inter-connecting bodies that constitute a real physical mechanical joint are modeled as colliding components, whose dynamic behavior is influenced by the geometric, physical and mechanical properties of the contacting surfaces. A continuous contact force model, based on the elastic Hertz theory, together with a dissipative term associated with the internal damping, is utilized to evaluate the intra-joint normal contact forces. The incorporation of the friction phenomenon, based on the classical Coulomb’s friction law, is also included in this study. The suitable contact force models are embedded into the dynamic equations of motion for the multibody systems. In the sequel of this process, the fundamental methods to deal with contact-impact events in mechanical systems are presented. Finally, two planar mechanisms with multiple revolute clearance joints are used to demonstrate the accuracy and efficiency of the presented approach and to discuss the main assumptions and procedures adopted. The effects of single versus multiple clearance revolute joints are discussed.

References

1.
Nikravesh
,
P. E.
, 1988,
Computer Aided Analysis of Mechanical Systems
,
Prentice Hall
,
Englewood Cliffs, New Jersey
.
2.
Haug
,
E. J.
, 1989,
Computer-Aided Kinematics and Dynamics of Mechanical Systems-Volume I: Basic Methods
,
Allyn and Bacon
,
Boston, Massachusetts
.
3.
Shabana
,
A. A.
, 2005,
Dynamics of Multibody Systems
,
John Wiley and Sons
,
New York
.
4.
Nikravesh
,
P. E.
, 2008,
Planar Multibody Dynamics: Formulation, Programming, and Applications
,
CCR Press
,
London
.
5.
McCarthy
,
J. M.
, 2000,
Geometric Design of Linkages: Systems and Controls
,
Springer
,
New York
.
6.
Flores
,
P.
,
Ambrósio
,
J.
,
Claro
,
J. C. P.
, and
Lankarani
,
H.M.
, 2006,“
Dynamics of Multibody Systems with Spherical Clearance Joints
,”
J. Comput. Nonlinear Dyn.
,
1
(
3
), pp.
240
247
.
7.
Ravn
,
P.
,
Shivaswamy
,
S.
,
Alshaer
,
B. J.
, and
Lankarani
,
H. M.
, 2000, “
Joint Clearances With Lubricated Long Bearings in Multibody Mechanical Systems
,”
J. Mech. Des.
,
122
, pp.
484
488
.
8.
Ambrósio
,
J.
, and
Veríssimo
,
P.
, 2009, “
Sensitivity of a Vehicle Ride to the Suspension Bushing Characteristics
,”
J. Mech. Sci. Technol.
,
23
, pp.
1075
1082
.
9.
Park
,
J.
, and
Nikravesh
,
P. E.
, 1997, “
Effect of Steering-Housing Rubber Bushings on the Handling of a Vehicle
,” SAE Paper No. 970103, SAE, Warrendale, Pennsylvania.
10.
Lankarani
,
H. M.
, and
Nikravesh
,
P. E.
, 1990, “
A Contact Force Model With Hysteresis Damping for Impact Analysis of Multibody Systems
,”
J. Mech. Des.
,
112
, pp.
369
376
.
11.
Pfeiffer
,
F.
, and
Glocker
,
C.
, 1996,
Multibody Dynamics with Unilateral Constraints
,
John Wiley and Sons
,
New York
.
12.
Ambrósio
,
J.
, and
Veríssimo
,
P.
, 2009, “
Improved Bushing Models for General Multibody Systems and Vehicle Dynamics
,”
Multibody Syst. Dyn.
,
22
, pp.
341
365
.
13.
Tian
,
Q.
,
Zhang
,
Y.
,
Chen
,
L.
, and
Flores
,
P.
, 2009, “
Dynamics of Spatial Flexible Multibody Systems with Clearance and Lubricated Spherical Joints
,”
Comput. Struct.
,
87
(
13-14
), pp.
913
929
.
14.
Orden
,
J. C. G.
, 2005, “
Analysis of Joint Clearances in Multibody Systems
,”
Multibody Syst. Dyn.
,
13
(
4
), pp.
401
420
.
15.
Megahed
,
S. M.
, and
Haroun
,
A. F.
, 2012, “
Analysis of the Dynamic Behavioral Performance of Mechanical Systems with Multi–Clearance Joints
,”
J. Comput. Nonlinear Dyn.
,
7
,
0110021
-
10
.
16.
Bauchau
,
O. A.
, and
Rodriguez
,
J.
, 2002, “
Modelling of Joints with Clearance in Flexible Multibody Systems
,”
Int. J. Solids Struct.
,
39
, pp.
41
63
.
17.
Innocenti
,
C.
, 2002, “
Kinematic Clearance Sensitivity Analysis of Spatial Structures with Revolute Joints
,”
J. Mech. Des.
,
124
, pp.
52
57
.
18.
Flores
,
P.
,
Ambrósio
,
J.
,
Claro
,
J. C. P.
, and
Lankarani
,
H. M.
, 2008, “
Translational Joints with Clearance in Rigid Multibody Systems
,”
J. Comput. Nonlinear Dyn.
,
3
(
1
), pp.
0110071
10
.
19.
Farahanchi
,
F.
, and
Shaw
,
S.
, 1994, “
Chaotic and Periodic Dynamics of a Slider-Crank Mechanism with Slider Clearance
,”
J. Sound Vib.
,
177
(
3
), pp.
307
324
.
20.
Rhee
,
J.
, and
Akay
,
A.
, 1996, “
Dynamic Response of a Revolute Joint with Clearance
,”
Mech. Mach. Theory
,
31
, pp.
121
124
.
21.
Ryan
,
R. R.
, 1990,
ADAMS-Multibody System Analysis Software, Multibody Systems Handbook
,
Springer-Verlag
,
Berlin
.
22.
Smith
,
R. C.
, and
Haug
,
E. J.
, 1990,
DADS-Dynamic Analysis and Design System, Multibody Systems Handbook
,
Springer-Verlag
,
Berlin
.
23.
Pfeiffer
,
F.
, 2003, “
The Idea of Complementarity in Multibody Dynamics
,”
Arch. Appl. Mech.
,
72
(
11-12
), pp.
807
816
.
24.
Gonthier
,
Y.
,
McPhee
,
J.
,
Lange
,
C.
, and
Piedboeuf
,
J.-C.
, 2004, “
A Regularized Contact Model with Asymmetric Damping and Dwell-Time Dependent Friction
,”
Multibody Syst. Dyn.
,
11
, pp.
209
233
.
25.
Tasora
,
A.
, and
Anitescu
,
M.
, 2010, “
A Convex Complementarity Approach for Simulating Large Granular Flows
,”
J. Nonlinear Comput. Dyn.
,
5
(
3
),
031004
.
26.
Najafabadi
,
S. A. M.
,
Kövecses
,
J.
, and
Angeles
,
J.
, 2008, “
Generalization of the Energetic Coefficient of Restitution for Contacts in Multibody Systems
,”
J. Nonlinear Comput. Dyn.
,
3
(
4
),
041008
.
27.
Wriggers
,
P.
, 2006,
Computational Contact Mechanics
, 2nd ed.,
Springer-Verlag
,
Berlin
.
28.
Ebrahimi
,
S.
, and
Eberhard
,
P.
, 2006, “
A Linear Complementarity Formulation on Position Level for Frictionless Impact of Planar Deformable Bodies
,”
ZAMM
,
86
(
10
), pp.
807
817
.
29.
Liu
,
C.-S.
,
Zhang
,
K.
, and
Yang
,
R.
, 2007, “
The FEM Analysis and Approximate Model for Cylindrical Joints with Clearances
,”
Mech. Mach. Theory
,
42
, pp.
183
197
.
30.
Wu
,
S -H.
, and
Tsai
,
S.-J.
, 2009, “
Contact Stress Analysis of Skew Conical Involute Gear Drives in Approximate Line Contact
,”
Mech. Mach. Theory
,
44
(
9
), pp.
1658
1676
.
31.
Wojtyra
,
M.
, 2009, “
Joint Reactions in Rigid Body Mechanisms with Dependent Constraints
,”
Mech. Mach. Theory
,
44
(
12
), pp.
2265
2278
.
32.
Ebrahimi
,
S.
, and
Kövecses
,
J.
, 2010, “
Unit Homogenization for Estimation of Inertial Parameters of Multibody Mechanical Systems
,”
Mech. Mach. Theory
,
45
(
3
), pp.
438
453
.
33.
Dopico
,
D.
,
Luaces
,
A.
,
Gonzalez
,
M.
, and
Cuadrado
,
J.
, 2010, “
Dealing with Multiple Contacts in a Human-in-the-loop-Application
,”
Multibody Syst. Dyn.
,
25
, pp.
167
183
.
34.
Machado
,
M.
,
Flores
,
P.
,
Claro
,
J. C. P.
,
Ambrósio
,
J.
,
Silva
,
M.
,
Completo
,
A.
, and
Lankarani
,
H. M.
, 2010, “
Development of a Planar Multibody Model of the Human Knee Joint
,”
Nonlinear Dyn.
,
60
(
3
), pp.
459
478
.
35.
Tasora
,
A.
,
Negrut
,
D.
, and
Anitescu
,
A.
, 2008, “
Large-Scale Parallel Multi-Body Dynamics with Frictional Contact on the Graphical Processing Unit
,”
Proc. Inst. Mech. Eng.,, Part-K J. Multibody Dyn.
,
222
, pp.
315
326
.
36.
Hirschkorn
,
M.
,
McPhee
,
J.
, and
Birkett
,
S.
, 2006, “
Dynamic Modeling and Experimental Testing of a Piano Action Mechanism
,”
J. Comput. Nonlinear Dyn.
,
1
(
1
), pp.
47
55
.
37.
Gilardi
,
G.
, and
Sharf
,
I.
, 2002, “
Literature Survey of Contact Dynamics Modeling
,”
Mech. Mach. Theory
,
37
, pp.
1213
1239
.
38.
Hippmann
,
G.
, 2004, “
An Algorithm for Compliant Contact Between Complexly Shaped Bodies
,”
Multibody Syst. Dyn.
,
12
, pp.
345
362
.
39.
Flores
,
P.
, and
Ambrósio
,
J.
, 2010, “
On the Contact Detection for Contact-Impact Analysis in Multibody Systems
,”
Multibody Syst. Dyn.
,
24
(
1
), pp.
103
122
.
40.
Khulief
,
Y. A.
, and
Shabana
,
A. A.
, 1987, “
A Continuous Force Model for the Impact Analysis of Flexible Multibody Systems
,”
Mech. Mach. Theory
,
22
, pp.
213
224
.
41.
Lankarani
,
H. M.
, and
Nikravesh
,
P. E.
, 1994, “
Continuous Contact Force Models for Impact Analysis in Multibody Systems
,”
Nonlinear Dyn.
,
5
, pp.
193
207
.
42.
Dias
,
J. M. P.
, and
Pereira
,
M. S.
, 1995, “
Dynamics of Flexible Mechanical Systems with Con-Tact-Impact and Plastic Deformations
,”
Nonlinear Dyn.
,
8
, pp.
491
512
.
43.
Hunt
,
K. H.
, and
Crossley
,
F. R. E.
, 1975, “
Coefficient of Restitution Interpreted as Damping in Vibroimpact
,”
J. Appl. Mech.
,
7
, pp.
440
445
.
44.
Oden
,
J. T.
, and
Martins
,
J. A. C.
, 1985, “
Models and Computational Methods for Dynamic Friction Phenomena
,”
Comput. Meth. Appl. Mech. Eng.
,
52
, pp.
527
634
.
45.
Feeny
,
B.
,
Guran
,
A.
,
Hinrichs
,
N.
, and
Popp
,
K.
, 1998, “
A Historical Review on Dry Friction and Stick-Slip Phenomena
,”
Appl. Mech. Rev.
,
51
, pp.
321
341
.
46.
Anitescu
,
M.
,
Potra
,
F. A.
, and
Stewart
,
D. E.
, 1999, “
Time-Stepping for Three-Dimensional Rigid Body Dynamics
,”
Comput. Meth. Appl. Mech. Eng.
,
177
(
3
), pp.
183
197
.
47.
Pang
,
J.-S.
, and
Stewart
,
D. E.
, 2008, “
Differential Variational Inequalities
,”
Math. Program.
,
113
, pp.
345
424
.
48.
Glocker
,
C.
, and
Studer
,
C.
, 2005, “
Formulation and Preparation for Numerical Evaluation of Linear Complementary Systems in Dynamics
,”
Multibody Syst. Dyn.
,
13
, pp.
447
463
.
49.
Förg
,
M.
,
Pfeiffer
,
F.
,
Ulbrich
,
H.
, 2005, “
Simulation of Unilateral Constrained Systems with Many Bodies
,”
Multibody Syst. Dyn.
,
14
(
2
), pp.
137
154
.
50.
Acary
,
V.
, and
Brogliato
,
B.
, 2008, “
Numerical Methods for Non-Smooth Dynamical Systems: Applications in Mechanics and Electronics
,”
Applied and Computational Mechanics
Springer-Verlag
,
Berlin- Heidelberg
, Vol.
35
.
51.
Studer
,
C.
,
Leine
,
R. I.
, and
Glocker
,
C.
, 2008, “
Step Size Adjustment and Extrapolation for Time-Stepping Schemes in Non-Smooth Dynamics
,”
Int. J. Numer. Methods Eng.
,
76
(
11
), pp.
1747
1781
.
52.
Brogliato
,
B.
,
Ten Dam
,
A. A.
,
Paoli
,
L.
,
Genot
,
F.
, and
Abadie
,
M.
, 2002, “
Numerical Simulations of Finite Dimensional Multibody Non-Smooth Mechanical Systems
,”
Appl. Mech.
,
55
, pp.
107
150
.
53.
Glocker
,
C.
, and
Pfeiffer
,
F.
, 1993, “
Complementarity Problems in Multibody Systems with Planar Friction
,”
Arch. Appl. Mech.
,
63
(
7
), pp.
452
463
.
54.
Pang
,
J.
, and
Trinkle
,
J. C.
, 1996, “
Complementarity Formulations and Existence of Solutions of Dynamic Multi-Rigid-Body Contact Problems with Coulomb Friction
,”
Math. Program.
,
73
(
2
), pp.
199
226
.
55.
Trinkle
,
J. C.
,
Tzitzouris
,
J. A.
, and
Pang
,
J. S.
, 2001,“
Dynamic Multi-Rigid-Body Systems with Concurrent Distributed Contacts
,”
Philos. Trans. R. Soc. London
,
359
, pp.
2575
2593
.
56.
Signorini
,
A.
, 1933,
Sopra Alcune Questioni di Elastostatica
,
Atti della Societa Italian per il Progresso della Scienza
.
57.
Moreau
,
J. J.
, 1979, “
Application of Convex Analysis to some Problems of Dry Friction
,”
Trends in Applications of Pure Mathematics to Mechanics
,
H.
Zorski
, ed.,
Pitman
,
London, U.K.
pp.
263
280
.
58.
Panagiotopoulos
,
P. D.
, 1985,
Inequality Problems in Mechanics and Applications, Convex and Nonconvex Energy Functionals
,
Birkhäuser-Verlag.
,
Basel.
59.
Kwak
,
B. M.
, 1991, “
Complementarity Problem Formulation of Three-Dimensional Frictional Contact
,”
J. Appl. Mech.
,
58
, pp.
134
140
.
60.
Anitescu
,
M.
, and
Potra
,
F. A.
, 1997, “
Formulating Dynamic Multi-Rigid-Body Contact Problems with Friction as Solvable Linear Complementarity Problems
,”
Nonlinear Dyn.
,
14
(
3
), pp.
231
247
.
61.
Brogliato
,
B.
, 2003, “
Some Perspectives on the Analysis and Control of Complementarity Systems
,”
IEEE Trans. Autom. Control
,
48
(
6
), pp.
918
935
.
62.
Timoshenko
,
S. P.
, and
Goodier
,
J. N.
, 1970,
Theory of Elasticity
,
McGraw Hill
,
New York
.
63.
Hertz
,
H.
, 1896,
On the Contact of Solids - On the Contact of Rigid Elastic Solids and on Hardness
,
D. E.
Jones
and
G. A.
Schott
, Trans.,,
Miscellaneous Papers, MacMillan and Co. Ltd.
,
London
, pp.
146
183
.
64.
Erkaya
,
S.
, and
Uzmay
,
I.
, 2009, “
Investigation on Effect of Joint Clearance on Dynamics of Four-Bar Mechanism
,”
Nonlinear Dyn.
,
58
(
1-2
), pp.
179
198
.
65.
Flores
,
P.
, 2010, “
A Parametric Study on the Dynamic Response of Planar Multibody Systems with Multiple Clearance Joints
,”
Nonlinear Dyn.
,
61
(
4
), pp.
633
653
.
66.
Zukas
,
J. A.
,
Nicholas
,
T.
,
Greszczuk
,
L. B.
, and
Curran
,
D. R.
, 1982,
Impact Dynamics
,
John Wiley and Sons
,
New York
.
67.
Goldsmith
,
W.
, 1960,
Impact - The Theory and Physical Behaviour of Colliding Solids
,
Edward Arnold Ltd
,
London
.
68.
Greenwood
,
D. T.
, 1965,
Principles of Dynamics
,
Prentice Hall
,
Englewood Cliffs, New Jersey
.
69.
Flores
,
P.
, 2004, “
Dynamic Analysis of Mechanical Systems with Imperfect Kinematic Joints
,” Ph. D. thesis, Mechanical Engineering Department, University of Minho, Guimarães, Portugal.
70.
Baumgarte
,
J.
, 1972, “
Stabilization of Constraints and Integrals of Motion in Dynamical Systems
,”
Comput. Meth. Appl. Mech. Eng.
,
1
, pp.
1
16
.
71.
Flores
,
P.
,
Machado
,
M.
,
Seabra
,
E.
, and
Silva
,
M. T.
, 2011, “
A Parametric Study on the Baumgarte Stabilization Method for Forward Dynamics of Constrained Multibody Systems
,”
J. Comput. Nonlinear Dyn.
,
6
(
1
),
011019
-
9
.
72.
Shampine
,
L.
, and
Gordon
,
M.
, 1975,
Computer Solution of Ordinary Differential Equations: The Initial Value Problem
,
Freeman
,
San Francisco, California
.
73.
ANSY, Y14.5M-1994
, 1994,
Dimensional and Tolerancing
,
ASME Press
,
New York
.
74.
Wiggins
,
S.
, 1990,
Introduction to Applied Nonlinear Dynamical Systems and Chaos
,
Springer Verlag
,
New York
.
75.
Flores
,
P.
, 2010,
MUBODYNA – A FORTRAN Program for DYNAMIC ANALYSIS of Planar Multibody Systems
,
University of Minho
,
Guimarães, Portugal
.
You do not currently have access to this content.