This paper presents an efficient intrinsic finite element approach for modeling and analyzing the forced dynamic response of helical springs. The finite element treatment employs intrinsic curvature (and strain) interpolation and vice rotation (and displacement) interpolation and, thus, can accurately and efficiently represent initially curved and twisted beams with a sparse number of elements. The governing equations of motion contain nonlinearities necessary for large curvatures. In addition, a constitutive model is developed, which captures coupling due to nonzero initial curvature and strain. The method is employed to efficiently study dynamically-loaded helical springs. Convergence studies demonstrate that a sparse number of elements accurately capture spring dynamic response, with more elements required to resolve higher frequency content, as expected. Presented results also document rich, amplitude-dependent frequency response. In particular, moderate loading amplitudes lead to the presence of secondary resonances (not captured by linearized models), while large loading amplitudes lead to complex dynamics and transverse buckling.

References

1.
2.
Pearson
,
D.
, and
Wittrick
,
W.
, 1986, “
An Exact Solution for the Vibration of Helical Springs Using a Bernoulli-Euler Model
,”
Int. J. Mech. Sci.
,
28
(
2
), pp.
83
96
.
3.
Michell
,
J.
, 1890, “
The Small Deformation of Curves and Surfaces With Application to the Vibrations of a Helix and a Circular Ring
,”
Messenger Math.
,
19
, pp.
68
76
.
4.
Love
,
A.
, 1899, “
The Propagation of Waves of Elastic Displacement Along a Helical Wire
,”
Trans. Cambridge Philos. Soc.
,
18
, pp.
364
374
.
5.
Yoshimura
,
Y.
, and
Murata
,
Y.
, 1952, “
On the Elastic Waves Propagated Along Coil Springs
,”
Rep. Inst. Sci. Tech.
,
6
, pp.
27
35
. Available at: http://ci.nii.ac.jp/naid/110001038565/http://ci.nii.ac.jp/naid/110001038565/.
6.
Wittrick
,
W.
, 1966, “
On Elastic Wave Propagation in Helical Springs
,”
Int. J. Mech. Sci.
,
8
(
1
), pp.
25
47
.
7.
Phillips
,
J.
, and
Costello
,
G.
, 1972, “
Large Deflections of Impacted Helical Springs
,”
J. Acoust. Soc. Am.
,
51
, pp.
967
973
.
8.
Sinha
,
S.
, and
Costello
,
G.
, 1978, “
The Numerical Solution of the Dynamic Response of Helical Springs
,”
Int. J. Numer. Methods Eng.
,
12
, pp.
949
961
.
9.
Mottershead
,
J.
, 1980, “
Finite Elements for Dynamical Analysis of Helical Rods
,”
Int. J. Mech. Sci.
,
22
(
5
), pp.
267
283
.
10.
Mottershead
,
J.
, 1982, “
The Large Displacements and Dynamic Stability of Springs Using Helical Finite Elements
,”
Int. J. Mech. Sci.
,
24
(
9
), pp.
547
558
.
11.
Girgin
,
K.
, 2006, “
Free Vibration Analysis of Non-Cylindrical Helices With, Variable Cross-Section by Using Mixed Fem
,”
J. Sound Vib.
,
297
(
3-5
), pp.
931
945
.
12.
Lee
,
J.
, 2007, “
Free Vibration Analysis of Cylindrical Helical Springs by the Pseudospectral Method
,”
J. Sound Vib.
,
302
(
1-2
), pp.
185
196
.
13.
Taktak
,
M.
,
Dammak
,
F.
,
Abid
,
S.
, and
Haddar
,
M.
, 2005, “
A Mixed-Hybrid Finite Element for Three-Dimensional Isotropic Helical Beam Analysis
,”
Int. J. Mech. Sci.
,
47
(
2
), pp.
209
229
.
14.
Taktak
,
M.
,
Dammak
,
F.
,
Abid
,
S.
, and
Haddar
,
M.
, 2008, “
A Finite Element for Dynamic Analysis of a Cylindrical Isotropic Helical Spring
,”
J. Mech. Mater. Struct.
,
3
(
4
), pp.
641
658
.
15.
Çalim
,
F.
, 2009, “
Forced Vibration of Helical Rods of Arbitrary Shape
,”
Mech. Res. Commun.
,
36
(
8
), pp.
882
891
.
16.
Busool
,
W.
, and
Eisenberger
,
M.
, 2002, “
Free Vibration of Helicoidal Beams of Arbitrary Shape and Variable Cross Section
,”
J. Vibr. Acoust.
,
124
(
3
), pp.
397
409
.
17.
Yildirim
,
V.
, 1997, “
Natural Frequencies of Helical Springs of Arbitrary Shape
,”
J. Sound Vib.
,
204
(
2
), pp.
311
329
.
18.
Yildirim
,
V.
, 2002, “
Expressions for Predicting Fundamental Natural Frequencies of Non-Cylindrical Helical Springs
,”
J. Sound Vib.
,
252
(
3
), pp.
479
491
.
19.
Treyssède
,
F.
, and
Laguerre
,
L.
, 2009, “
Investigation of Elastic Modes Propagating in Multi-Wire Helical Waveguides
,”
J. Sound Vib.
,
329
(
10
), pp.
1702
1716
.
20.
Leamy
,
M. J.
, and
Lee
,
C. Y.
, 2009, “
Dynamic Response of Intrinsic Continua for Use in Biological and Molecular Modeling: Explicit Finite Element Formulation
,”
Int. J. Numer. Methods Eng.
,
80
(
9
), pp.
1171
1195
.
21.
Hodges
,
D. H.
, 2003, “
Geometrically Exact, Intrinsic Theory for Dynamics of Curved and Twisted Anisotropic Beams
,”
AIAA J.
,
41
(
6
), pp.
1131
1137
.
22.
Yu
,
W. B.
, and
Hodges
,
D. H.
, 2005, “
Generalized Timoshenko Theory of the Variational Asymptotic Beam Sectional Analysis
,”
J. Am. Helicopter Soc.
,
50
(
1
), pp.
46
55
.
23.
Chouaieb
,
N.
,
Goriely
,
A.
, and
Maddocks
,
J.
, 2006, “
Helices
,”
Proc. Natl. Acad. Sci.
,
103
(
25
), pp.
9398
9403
.
24.
Leamy
,
M. J.
, 2007, “
Bulk Dynamic Response Modeling of Carbon Nanotubes Using an Intrinsic Finite Element Formulation Incorporating Interatomic Potentials
,”
Int. J. Solids Struct.
,
44
(
3-4
), pp.
874
894
.
25.
Green
,
A. E.
, and
Zerna
,
W.
, 1954,
Theoretical Elasticity
,
Clarendon Press
,
Oxford.
26.
Bauchau
,
O.
, 2002, “
Flexible Multibody Dynamics
,” lecture notes.
27.
Timoshenko
,
S.
, and
Goodier
,
J. N.
, 1969,
Theory of Elasticity, Engineering Societies Monographs
,
McGraw-Hill
,
New York
.
28.
Yu
,
W. B.
, and
Hodges
,
D. H.
, 2004, “
Elasticity Solutions Versus Asymptotic Sectional Analysis of Homogeneous, Isotropic, Prismatic Beams
,”
Trans. ASME, J. Appl. Mech.
,
71
(
1
), pp.
15
23
.
29.
Chung
,
J.
, and
Hulbert
,
G. M.
, 1993, “
A Time Integration Algorithm for Structural Dynamics With Improved Numerical Dissipation - The Generalized-Alpha Method
,”
Trans. ASME, J. Appl. Mech.
,
60
(
2
), pp.
371
375
.
30.
Gobat
,
J. I.
, and
Grosenbaugh
,
M. A.
, 2001, “
Application of the Generalized-Alpha Method to the Time Integration of the Cable Dynamics Equations
,”
Comput. Methods Appl. Mech. Eng.
,
190
(
37-38
), pp.
4817
4829
.
31.
Becker
,
L.
,
Chassie
,
G.
, and
Cleghorn
,
W.
, 2002, “
On the Natural Frequencies of Helical Compression Springs
,”
Int. J. Mech. Sci.
,
44
(
4
), pp.
825
841
.
32.
Lee
,
J.
, and
Thompson
,
D.
, 2001, “
Dynamic Stiffness Formulation, Free Vibration and Wave Motion of Helical Springs
,”
J. Sound Vib.
,
239
(
2
), pp.
297
320
.
33.
Yildirim
,
V.
, 1998, “
Investigation of Parameters Affecting Free Vibration Frequency of Helical Springs
,”
Int. J. Numer. Methods Eng.
,
39
(
1
), pp.
99
114
.
34.
Nayfeh
,
A. H.
, and
Mook
,
D. T.
, 1979,
Nonlinear Oscillations, Pure and Applied Mathematics
,
Wiley
,
New York
.
35.
Hughes
,
T. J. R.
, 1987,
The Finite Element Method: Linear Static and Dynamic Finite Element Analysis
,
Prentice-Hall
,
Englewood Cliffs, N.J
.
36.
See supplementary material at: http://dx.doi.org/10.1115/1.4005820http://dx.doi.org/10.1115/1.4005820E-JCNDDM-7-031007, for a video depicting the spring response.
You do not currently have access to this content.