In the current study, the nonlinear free vibration behavior of microbeams made of functionally graded materials (FGMs) is investigated based on the strain gradient elasticity theory and von Karman geometric nonlinearity. The nonclassical beam model is developed in the context of the Timoshenko beam theory which contains material length scale parameters to take the size effect into account. The model can reduce to the beam models based on the modified couple stress theory (MCST) and the classical beam theory (CBT) if two or all material length scale parameters are taken to be zero, respectively. The power low function is considered to describe the volume fraction of the ceramic and metal phases of the FGM microbeams. On the basis of Hamilton’s principle, the higher-order governing differential equations are obtained which are discretized along with different boundary conditions using the generalized differential quadrature method. The dimensionless linear and nonlinear frequencies of microbeams with various values of material property gradient index are calculated and compared with those obtained based on the MCST and an excellent agreement is found. Moreover, comparisons between the various beam models on the basis of linear and nonlinear types of strain gradient theory (SGT) and MCST are presented and it is observed that the difference between the frequencies obtained by the SGT and MCST is more significant for lower values of dimensionless length scale parameter.

References

1.
Witvrouw
,
A.
, and
Mehta
,
A.
, 2005, “
The Use of Functionally Graded Poly-SiGe Layers for MEMS Applications
,”
Mater. Sci. Forum
,
492–493
, pp.
255
260
.
2.
Hasanyan
,
D. J.
,
Batra
,
R. C.
, and
Harutyunyan
,
R. C.
, 2008, “
Pull-In Instabilities in Functionally Graded Microthermoelectromechanical Systems
,”
J. Therm. Stresses
,
31
, pp.
1006
1021
.
3.
Fu
,
Y. Q.
,
Du
,
H. J.
,
Huang
,
W. M.
,
Zhang
,
S.
, and
Hu
,
M.
, 2004, “
TiNi-Based Thin Films in MEMS Applications: A Review
,”
Sens. Actuators, A
,
112
, pp.
395
408
.
4.
Lee
,
Z.
,
Ophus
,
C.
,
Fischer
,
L. M.
,
Nelson-Fitzpatrick
,
N.
,
Westra
,
K. L.
, and
Evoy
,
S.
, 2006, “
Metallic NEMS Components Fabricated from Nanocomposite Al-Mo Films
,”
Nanotechnology
,
17
, pp.
3063
3070
.
5.
Chong
,
A. C. M.
, and
Lam
,
D. C. C.
, 1999, “
Strain Gradient Plasticity Effect in Indentation Hardness of Polymers
,”
J. Mater. Res.
,
14
, pp.
4103
4110
.
6.
Fleck
,
N. A.
,
Muller
,
G. M.
,
Ashby
,
M .F.
, and
Hutchinson
,
J. W.
, 1994, “
Strain Gradient Plasticity: Theory and Experiment
,”
Acta Metall. Mater.
,
42
, pp.
475
487
.
7.
Stolken
,
J. S.
, and
Evans
,
A. G.
, 1998, “
Microbend Test Method for Measuring the Plasticity Length Scale
,”
Acta Metall. Mater.
,
46
, pp.
5109
5115
.
8.
Ansari
,
R.
,
Sahmani
,
S.
, and
Arash
,
B.
, 2010, “
Nonlocal Plate Model for Free Vibrations of Single-Layered Graphene Sheets
,”
Phys. Lett. A
,
375
, pp.
53
62
.
9.
Ansari
,
R.
,
Sahmani
,
S.
, and
Rouhi
,
H.
, 2011, “
Axial Buckling Analysis of Single-Walled Carbon Nanotubes in Thermal Environments via Rayleigh-Ritz Technique
,”
Computational Materials Science
,
50
, pp.
3050
3055
.
10.
Ansari
,
R.
,
Gholami
,
R.
, and
Sahmani
,
S.
, 2011, “
Free Vibration of Size-Dependent Functionally Graded Microbeams based on a Strain Gradient Theory
,”
Composite Structures
,
94
, pp.
221
228
.
11.
Narendar
,
S.
, and
Gopalakrishnan
,
S.
, 2010, “
Terahertz Wave Characteristics of a Single-Walled Carbon Nanotube Containing a Fluid Flow Using The Nonlocal Timoshenko Beam Model
,”
Physica E
,
42
(
5
), pp.
1706
1712
.
12.
Ansari
,
R.
,
Sahmani
,
S.
, and
Rouhi
,
H.
, 2011, “
Rayleigh-Ritz Axial Buckling Analysis of Single-Walled Carbon Nanotubes with Different Boundary Conditions
,”
Phys. Lett. A
,
375
, pp.
1255
1263
.
13.
Ansari
,
R.
, and
Sahmani
,
S.
, 2011, “
Bending Behavior and Buckling of Nanobeams including Surface Stress Effects corresponding to Different Beam Theories
,”
Int. J. Eng. Sci.
,
49
, pp.
1244
1255
.
14.
Fleck
,
N. A.
, and
Hutchinson
,
J. W.
, 1993, “
Phenomenological Theory for Strain Gradient Effects in Plasticity
,”
J. Mech. Phys. Solids
,
41
, pp.
1825
1857
.
15.
Lam
,
D. C. C.
,
Yang
,
F.
,
Chong
,
A. C. M.
,
Wang
,
J.
, and
Tong
,
P.
, 2003, “
Experiments and Theory in Strain Gradient Elasticity
,”
J. Mech. Phys. Solids
,
51
, pp.
1477
1508
.
16.
Kong
,
S.
,
Zhou
,
S.
,
Nie
,
Z.
, and
Wang
,
K.
, 2009, “
Static and Dynamic Analysis of Micro Beams Based on Strain Gradient Elasticity Theory
,”
Int. J. Eng. Sci.
,
47
, pp.
487
498
.
17.
Wang
,
B.
,
Zhao
,
J.
, and
Zhou
,
S.
, 2010, “
A Micro Scale Timoshenko Beam Model Based on Strain Gradient Elasticity Theory
,”
European Journal of Mechanics A/Solids
,
29
, pp.
591
599
.
18.
Mindlin
,
R. D.
, and
Tiersten
,
H. F.
, 1962, “
Effects of Couple-Stresses in Linear Elasticity
,”
Archive of Rational Mechanics and Analysis
,
11
, pp.
415
448
.
19.
Koiter
,
W. T.
, 1964, “
Couple Stresses in the Theory of Elasticity I and II
,”
Proc. K. Ned. Akad. Wet., Ser. B: Phys. Sci.
,
67
, pp.
17
44
.
20.
Eringen
,
A. C.
, and
Suhubi
,
E. S.
, 1964, “
Nonlinear Theory of Simple Microelastic Solid-I
,”
Int. J. Eng. Sci.
,
2
, pp.
189
203
.
21.
Eringen
,
A. C.
, and
Suhubi
,
E. S.
, 1964, “
Nonlinear Theory of Simple Microelastic Solid-II
,”
Int. J. Eng. Sci.
,
2
, pp.
389
404
.
22.
Mindlin
,
R. D.
, 1964, “
Micro-Structure in Linear Elasticity
,”
Archive of Rational Mechanics and Analysis
,
16
, pp.
51
78
.
23.
Toupin
,
R. A.
, 1964, “
Theory of Elasticity with Couple Stresses
,”
Archive of Rational Mechanics and Analysis
,
17
, pp.
85
112
.
24.
Mindlin
,
R. D.
, 1965, “
Second Gradient of Strain and Surface Tension in Linear Elasticity
,”
Int. J. Solids Struct.
,
1
, pp.
417
438
.
25.
Mindlin
,
R. D.
, and
Eshel
,
N. N.
, 1968, “
On First Strain-Gradient Theories in Linear Elasticity
,”
Int. J. Solids Struct.
,
4
, pp.
109
124
.
26.
Eringen
,
A. C.
, 1983, “
On Differential Equations of Nonlocal Elasticity and Solutions of Screw Dislocation and Surface Waves
,”
J. Appl. Phys.
,
54
, pp.
4703
4710
.
27.
Vardoulaksi
,
I.
,
Exadaktylos
,
G.
, and
Kourkoulis
,
S. K.
, 1998, “
Bending of Marble with Intrinsic Length Scales: A Gradient Theory with Surface Energy and Size Effects
,”
Journal of Physique IV
,
8
, pp.
399
406
.
28.
Yang
,
F.
,
Chong
,
A. C. M.
,
Lam
,
D. C. C.
, and
Tong
,
P
, 2002, “
Couple Stress based Strain Gradient Theory for Elasticity
,”
Int. J. Solids Struct.
,
39
, pp.
2731
2743
.
29.
Timoshenko
,
S. P.
, and
Goodier
,
J. N.
, 1970,
Theory of Elasticity
, 3rd ed.,
McGraw-Hill
,
New York
.
30.
Ganapathi
,
M.
, 2007, “
Dynamic Stability Characteristics of Functionally Graded Materials Shallow Spherical Shells
,”
Composite Structures
,
79
, pp.
338
343
.
31.
Fares
,
M. E.
,
Elmarghany
,
M. K.
, and
Atta
,
D.
, 2009, “
An Efficient and Simple Refined Theory for Bending and Vibration of Functionally Graded Plates
,”
Composite Structures
,
91
, pp.
296
305
.
32.
Ke
,
L. L.
,
Yang
,
J.
, and
Kitipornchai
,
S.
, 2009, “
An Analytical Study on the Nonlinear Vibration of Functionally Graded Beams
,”
Meccanica
,
45
, pp.
743
752
.
33.
Asghari
,
M.
,
Kahrobaiyan
,
M. H.
, and
Ahmadian
,
M. T.
, 2010, “
A Nonlinear Timoshenko Beam Formulation Based on the Modified Couple Stress Theory
,”
Int. J. Eng. Sci.
,
48
, pp.
1749
1761
.
34.
Xia
,
W.
,
Wang
,
L.
, and
Yin
,
L.
, 2010, “
Nonlinear Non-Classical Microscale Beams: Static Bending, Postbuckling and Free Vibration
,”
Int. J. Eng. Sci.
,
48
, pp.
2044
2053
.
35.
Reddy
,
J. N.
, 2007,
Theory and Analysis of Elastic Plates and Shells
, 2nd ed.,
Taylor & Francis
,
London
.
36.
Ke
,
L. L.
,
Wang
,
Y. S.
,
Yang
,
J.
, and
Kitipornchai
,
S.
, 2011, “
Nonlinear Free Vibration of Size-Dependent Functionally Graded Microbeams
,”
Int. J. Eng. Sci.
,
50
(
1
), pp.
256
267
.
37.
Yang
,
J.
,
Ke
,
L. L.
, and
Kitipornchai
,
S.
, 2010, “
Nonlinear Free Vibration of Single-Walled Carbon Nanotubes Using Nonlocal Timoshenko Beam Theory
,”
Physica E
,
42
, pp.
1727
1735
.
38.
Shu
,
C.
,
Differential Qquadrature and Its Application in Engineering
(
Springer
,
New York
, 2000).
39.
Ke
,
L. L.
,
Xiang
,
Y.
,
Yang
,
J.
, and
Kitipornchai
,
S.
, 2009, “
Nonlinear Free Vibration of Embedded Double-Walled Carbon Nanotubes Based on Nonlocal Timoshenko Beam Theory
,”
Computational Materials Science
,
47
, pp.
409
417
.
40.
Kitipornchai
,
S.
,
Ke
,
L. L.
,
Yang
,
J.
, and
Xiang
,
Y.
, 2009, “
Nonlinear Vibration of Edge Cracked Functionally Graded Timoshenko Beams
,”
J. Sound Vib.
,
324
, pp.
962
982
.
41.
Ke
,
L. L.
,
Yang
,
J.
, and
Kitipornchai
,
S.
, 2010, “
Nonlinear Free Vibration of Functionally Graded Carbon Nanotube-Reinforced Composite Timoshenko Beam
,”
Composite Structures
,
92
, pp.
676
683
.
You do not currently have access to this content.