We compute explicitly feedback linearizing coordinates for a two-input control system without solving the corresponding PDEs. Our algorithm is based on a successive application of the Frobenius’ theorem and does not necessitate the checking of the involutive conditions for feedback linearization. Examples are provided for illustration.
Issue Section:
Technical Briefs
References
1.
Brockett
, R. W.
, 1978, “Feedback Invariants for Nonlinear Systems
,” Proceedings of the IFAC
, Helsinski, Sweden.2.
Hunt
, L. R.
, and Su
, R.
, 1981, “Linear Equivalents of Nonlinear Time Varying Systems
,” Proceedings of the Mathematical Theory of Networks and Systems
, CA, USA, pp. 119
–123
.3.
Jakubczyk
, B.
, and Respondek
, W.
, 1980, “On Linearization of Control Systems
,” Bull. Acad. Polon. Sci. Ser. Math.
, 28
, pp. 517
–522
.4.
Krener
, A. J.
, 1973, “On the Equivalence of Control Systems and the Linearization of Nonlinear Systems
,” SIAM J. Control
, 11
, pp. 670
–676
.5.
Mullhaupt
, Ph.
, 2006, “Quotient Submanifolds for Static Feedback Linearization
,” Syst. Control Lett.
, 55
, pp. 549
–557
.6.
Onawola
, O. O.
, and Sinha
, S. C.
, 2011, “A Feedback Linearization Approach for Panel Flutter Suppression with Piezoelectric Actuation
,” J. Comput. Nonlinear Dyn.
, 6
(1
), pp. 1
–8
.7.
Tall
, I. A.
, 2009, “State Linearization of Control Systems: An explicit Algorithm
,” Proceedings of the Joint 48th IEEE CDC and 28th CCC Conference
, Shanghai, P. R. C., pp. 7448
–7453
.8.
Tall
, I. A.
, 2009, “Explicit Feedback Linearization of Control Systems
,” Proceedings of the Joint 48th IEEE CDC and 28th CCC Conference
, Shanghai, P. R. C., pp. 7454
–7459
.9.
Tall
, I. A.
, 2010, “State and Feedback Linearizations of Single-Input Control Systems
,” Syst. Control Lett.
, 59
, pp. 429
–441
.10.
Zhang
, Y.
, and Sinha
, S. C.
, 2007, “Development of a Feedback Linearization Technique for Parametrically Excited Nonlinear Systems via Normal Forms
,” J. Comput. Nonlinear Dyn.
, pp. 124
–131
.11.
Tall
, I. A.
, 2010, “Multi-Input Control Systems: Feedback Linearization
,” Proccedings of the 49th IEEE CDC10
, Atlanta, GA, USA
.12.
Tall
, I. A.
, 2011, “Flow Box Theorem and Beyond
,” Afr. Diaspora J. Math.
, 11
(1
), pp. 75
–102
.13.
Nijmeijer
, H.
, and van der Schaft
, A. J.
, 1990, Nonlinear Dynamical Control Systems
, Springer-Verlag
, New York
.14.
Serrani
, A.
, Isidori
, A.
, Byrnes
, C. I.
, and Marconi
, L.
, 2000, “Recent Advances in Output Regulation of Nonlinear Systems
,” Nonlinear Control in the Year 2000
, A.
Isidori
, F.
Lamnabhi-Lagarrigue
, and W.
Respondek
, eds., LNCIS
, Vol. 259
, pp. 409
–419
.Copyright © 2012
by American Society of Mechanical Engineers
You do not currently have access to this content.