Proper orthogonal decomposition (POD) is one of the most significant reduced-order modeling (ROM) techniques in fluid mechanics. However, the application of POD based reduced-order models (POD-ROMs) is primarily limited to laminar flows due to the decay of physical accuracy. A few nonlinear closure models have been developed for improving the accuracy and stability of the POD-ROMs, which are generally computationally expensive. In this paper we propose a new closure strategy for POD-ROMs that is both accurate and effective. In the new closure model, the Frobenius norm of the Jacobian of the POD-ROM is introduced as the eddy viscosity coefficient. As a first step, the new method has been tested on a one-dimensional Burgers equation with a small dissipation coefficient ν=10-3. Numerical results show that the Jacobian based closure model greatly improves the physical accuracy of the POD-ROM, while maintaining a low computational cost.

References

1.
Berkooz
,
G.
,
Holmes
,
P.
, and
Lumley
,
J. L.
, 1993, “
The Proper Orthogonal Decomposition in the Analysis of Turbulent Flows
,”
Ann. Rev. Fluid Mech.
,
53
, pp.
321
575
.
2.
Deane
,
A. E.
, and
Mavriplis
,
C.
, 1994, “
Low-Dimensional Description of the Dynamics in Separated Flow Past Thick Airfoils
,”
AIAA J.
,
6
, pp.
1222
1234
.
3.
Holmes
,
P.
,
Lumley
,
J. L.
, and
Berkooz
,
G.
, 1996,
Turbulence, Coherent Structures, Dynamical Systems and Symmetry
,
Cambridge University Press
,
Cambridge.
4.
Ma
,
X.
, and
Karniadakis
,
G.
, 2002, “
A Low-DimensionalModel for Simulating Three-Dimensional Cylinder Flow
,”
J. Fluid Mech.
,
458
, pp.
181
190
.
5.
Noack
,
B. R.
,
Afanasiev
,
K.
,
Morzynski
,
M.
, and
Thiele
,
F.
, 2003, “
A Hierarchy of Low-Dimensional Models for the Transient and Post-Transient Cylinder Wake
,”
J. Fluid Mech.
,
497
, pp.
335
363
.
6.
Akhtar
,
I.
, and
Nayfeh
,
A. H.
, 2010, “
Model Based Control of Laminar Wake Using Fluidic Actuation
,”
J. Comput. Nonlin. Dyn.
,
5
(
4
), p.
041015
.
7.
Sirovich
,
L.
, and
Kirby
,
M.
, 1987, “
Low-Dimensional Procedure for the Characterization of Human Faces
,”
J. Opt. Soc. Am. A
,
4
(
3
), pp.
529
524
.
8.
Bakewell
,
H. P.
, and
Lumley
,
J. L.
, 1967, “
Viscous Sublayer and Adjacent Wall Region in Turbulent Pipe Flow
,”
Phys. Fluids
,
10
(
9
), pp.
1880
1889
.
9.
Aubry
,
N.
,
Holmes
,
P.
,
Lumley
,
J. L.
, and
Stone
,
E.
, 1988, “
The Dynamics of Coherent Structures in the Wall Region of a Turbulent Boundary Layer
,”
J. Fluid Mech.
,
192
, pp.
115
173
.
10.
Podvin
,
B.
, 2001, “
On the Adequacy of the Ten-Dimensional Model for the Wall Layer
,”
Phys. Fluids
,
13
, pp.
210
224
.
11.
Podvin
,
B.
, 2009, “
A Proper-Orthogonal-Decomposition–Based Model for the Wall Layer of a Turbulent Channel Flow
,”
Phys. Fluids
,
21
, p.
015111
.
12.
Rempfer
,
D.
, and
Fasel
,
H. F.
, 1994, “
Dynamics of Three-Dimensional Coherent Structures in a Flat-Plate Boundary Layer
,”
J. Fluid Mech.
,
275
, pp.
257
283
.
13.
Cazemier
,
W.
,
Verstappen
,
R. W.
, and
Veldman
,
A. E.
, 1998, “
Proper Orthogonal Decomposition and Low-Dimensional Models for Driven Cavity Flows
,”
Phys. Fluids
,
10
(
7
), pp.
1685
1699
.
14.
Wang
,
Z.
,
Akhtar
,
I.
,
Borggaard
,
J.
, and
Iliescu
,
T.
, 2011, “
Two-Level Discretizations of Nonlinear Closure Models for Proper Orthogonal Decomposition
,”
J. Comput. Phys.
,
230
, pp.
126
146
.
15.
Borggaard
,
J.
,
Iliescu
,
T.
, and
Wang
,
Z.
, 2011, “
Artificial Viscosity Proper Orthogonal Decomposition
,”
Math. Comput. Model.
,
53
, pp.
269
279
.
16.
Akhtar
,
I.
,
Borggaard
,
J.
,
Iliescu
,
T.
, and
Ribbens
,
C. J.
, 2009, “
Modeling High Frequency Modes for Accurate Low-Dimensional Galerkin Models
,”
Proceedings of the AIAA 39th Computational Fluid Dynamics Conference
, AIAA Paper No. 2009-4202.
17.
Sagaut
,
P.
, 2006, “
Large Eddy Simulation for Incompressible Flows
,” in
Scientific Computation
, 3rd ed.,
Springer
,
Berlin.
18.
Berselli
,
L. C.
,
Iliescu
,
T.
, and
Layton
,
W. J.
, 2006, “
Mathematics of Large Eddy Simulation of Turbulent Flows
,”
Scientific Computation
,
Springer
,
Berlin.
19.
Kunisch
,
K.
, and
Volkwein
,
S.
, 1999, “
Control of the Burgers Equation by a Reduced-Order Approach Using Proper Orthogonal Decomposition
,”
J. Optimization Theory Appl.
,
102
(
2
), pp.
345
371
.
20.
Sirovich
,
L.
, 1987, “
Turbulence and the Dynamics of Coherent Structures. I. Coherent Structures
,”
Q. Appl. Math.
,
45
(
3
), pp.
561
571
.
21.
Sirovich
,
L.
, 1987, “
Turbulence and the Dynamics of Coherent Structures. II. Symmetries and Transformations
,”
Q. Appl. Math.
,
45
(
3
), pp.
573
582
.
22.
Sirovich
,
L.
, 1987, “
Turbulence and the Dynamics of Coherent Structures. III. Dynamics and Scaling
,”
Q. Appl. Math.
,
45
(
3
), pp.
583
590
.
23.
Aubry
,
N.
,
Lian
,
W. Y.
, and
Titi
,
E. S.
, 1993, “
Preserving Symmetries in the Proper Orthogonal Decomposition
,”
SIAM J. Sci. Comput.
,
14
(
2
), pp.
483
505
.
24.
Akhtar
,
I.
,
Nayfeh
,
A. H.
, and
Ribbens
,
C. J.
, 2009, “
On the Stability and Extension of Reduced-Order Galerkin Models in Incompressible Flows: A Numerical Study of Vortex Shedding
,”
Theor. Comput. Fluid Dyn.
,
23
(
3
), pp.
213
237
.
You do not currently have access to this content.