This paper presents an advanced pantograph-catenary-vehicle-track model, which allows us to analyze the vertical dynamics of the complete system. The developed model is able to evaluate the displacements and the contact force generated in the catenary-pantograph as well as the wheel-track interactions. Nevertheless, this paper focuses on the possible influence of track irregularities on the catenary-pantograph dynamic interaction. From a power spectral density function of the track irregularities, 180 track profiles and their respective catenary-pantograph-vehicle-track simulations have been generated. The wide range of results allows us to obtain some conclusions about the influence of the track profile in the catenary-pantograph behavior.

References

1.
Poetsch
,
G.
,
Evans
,
J.
,
Meisinger
,
R.
,
Baldauf
,
W.
,
Veitl
,
A.
, and
Wallaschek
,
J.
, 1997, “
Pantograph/Catenary Dynamics and Control
,”
Veh. Syst. Dyn.
,
28
, pp.
159
195
.
2.
Shabana
,
A.
, and
San
,
J.
, 2001, “
A Survey of Rail Vehicle Track Simulations and Flexible Multibody Dynamics
,”
Nonlinear Dyn.
,
26
, pp.
179
210
.
3.
Collina
,
A.
, and
Bruni
,
S.
, 2002, “
Numerical Simulation of Pantograph-Overhead Equipment Interaction
,”
Veh. Syst. Dyn.
,
38
(
4
), pp.
261
291
.
4.
Wu
,
T.
, and
Brennan
,
M.
, 1999, “
Dynamic Stiffness of a Railway Overhead Wire System and Its Effect on Pantographcatenary System Dynamics
,”
J. Sound Vib.
,
219
(
3
), pp.
483
502
.
5.
Lopez-Garcia
,
O.
,
Carnicero
,
A.
, and
Marono
,
J.
, 2007, “
Influence of Stiffness and Contact Modelling on Catenary Pantograph System Dynamics
,”
J. Sound Vib.
,
299
, pp.
806
821
.
6.
Arnold
,
M.
, and
Simeon
,
B.
, 2000, “
Pantograph and Catenary Dynamics: A Benchmark Problem and Its Numerical Solution
,”
Appl. Numer. Math.
,
34
(
4
), pp.
345
362
.
7.
Olsson
,
M.
, 1985, “
Finite Element, Modal Co-ordinate Analysis of Structures Subjected to Moving Loads
,”
J. Sound Vib.
,
99
, pp.
1
12
.
8.
Koh
,
C.
,
Ong
,
J.
,
Chua
,
D.
, and
Feng
,
J.
, 2003, “
Moving Element Method for Train-Track Dynamics
,”
Int. J. Numer. Methods Eng.
,
56
, pp.
1549
1567
.
9.
Lou
,
P.
, and
Zeng
,
Q.
, 2005, “
Formulation of Equations of Motion of Finite Element Form for Vehicle-Track-Bridge Interaction System With Two Types of Vehicle Model
,”
Int. J. Numer. Methods Eng.
,
62
, pp.
435
474
.
10.
Lou
,
P.
, 2005, “
Vertical Dynamic Responses of a Simply Supported Bridge Subjected to a Moving Train With Two-Wheel Set Vehicles Using Modal Analysis Method
,”
Int. J. Numer. Methods Eng.
,
64
, pp.
1207
1235
.
11.
Zhai
,
W.
,
Wang
,
K.
, and
Cai
,
C.
, 2009, “
Fundamentals of Vehicle-Track Coupled Dynamics
,”
Veh. Syst. Dyn.
,
47
(
11
), pp.
1349
1376
.
12.
Pombo
,
J.
,
Ambrosio
,
J.
, and
Silva
,
M.
, 2007, “
A New Wheel-Rail Contact Model for Railway Dynamics
,”
Veh. Syst. Dyn.
, 45.
13.
Pombo
,
J.
,
Ambrosio
,
J.
,
Pereira
,
M.
,
Verardi
,
R.
,
Ariaudo
,
C.
, and
Kuka
,
N.
, 2011, “
Influence of Track Conditions and Wheel Wear State on the Loads Imposed on the Infrastructure by Railway Vehicles
,”
Comput. Struct.
,
89
, pp.
1882
1894
.
14.
Seo
,
J.
,
Sugiyama
,
H.
, and
Shabana
,
A.
, 2005, “
Three-Dimensional Large Deformation Analysis of the Multibody Pantograph/Catenary Systems
,”
Nonlinear Dyn.
,
42
, pp.
199
215
.
15.
Zhai
,
W.
, and
Cai
,
C.
, 1998, “
Effect of Locomotive Vibration on Pantograph-Catenary System Dynamics
,”
Veh. Syst. Dyn. Suppl.
,
28
, pp.
47
58
.
16.
Carnicero
,
A.
,
Lopez-Garcia
,
O.
,
Torres
,
V.
, and
Jimenez-Octavio
,
J.
, 2006, “
An Algorithm Based on Finite Element Method and Catenary Equation to Compute the Initial Equilibrium of Railway Overhead
,”
Eighth International Conference on Computational Structures Technology
, Las Palmas de Gran Canaria (España), Sept. 12-15.
17.
Such
,
M.
,
Jimenez-Octavio
,
J.
,
Carnicero
,
A.
, and
Lopez-Garcia
,
O.
, 2009, “
An Approach Based on the Catenary Equation to Deal With Static Analysis of Three Dimensional Cable Structures
,”
Eng. Struct.
,
31
, pp.
2162
2170
.
18.
Crisfield
,
M.
, 1997.
Non-linear Finite Element Analysis of Solids and Structures
, Vol.
1
,
Wiley
,
New York
.
19.
Crisfield
,
M.
, 1997,
Non-linear Finite Element Analysis of Solids and Structures
, Vol.
2
,
Wiley
,
New York
.
20.
Kiessling
,
F.
,
Puschmann
,
R.
,
Schmieder
,
A.
, and
Schneider
,
E.
, 2009,
Contact Lines for Electric Railways
.
Publicis Publishing
,
Erlangen
.
21.
CENELEC
, 2002.
EN50318:2002, Railway Applications. Current Collection Systems. Validation of Simulation of the Dynamic Interaction Between Pantograph and Overhead Contact Line
, July ed.
European Committee for Electrotechnical Standardization
,
Brussels
.
22.
Melis
,
M.
, 2008,
Dinamica Vertical de la Via, Catedra de Ferrocarriles (in Spanish)
,
ETSICCyP
,
Madrid
.
23.
Gabaldon
,
F.
,
Riquelme
,
F.
,
Goicolea
,
J.
, and
Arribas
,
J.
, 2005,
Dynamic Analysis of Structures Under High Speed Train Loads: Case Studies in Spain
. Dynamics of High-Speed Railway Bridges, Advanced Course, Porto, Faculty of Engineering,
University of Porto
,
London
.
24.
Frýba
,
L.
, 1996, Dynamics of Railway Bridges, Thomas Telford.
25.
Hilber
,
H. M.
,
Hughes
,
T. R.
, and
Talor
,
R. L.
, 1977, “
Improved Numerical Dissipation for Time Integration Algorithms in Structural Dynamics
,”
Earthquake Eng. Struct. Dyn.
,
5
, pp.
282
292
.
You do not currently have access to this content.