Abstract

As a transmission component, the gear has been obtained widespread attention. The remaining useful life (RUL) prediction of gear is critical to the prognostics health management (PHM) of gear transmission systems. The digital twin (DT) provides support for gear RUL prediction with the advantages of rich health information data and accurate health indicators (HI). This paper reviews digital twin-driven RUL prediction methods for gear performance degradation, from the view of digital twin-driven physical model-based and virtual model-based prediction method. From the view of the physical model-based one, it includes a prediction model based on gear crack, gear fatigue, gear surface scratch, gear tooth breakage, and gear permanent deformation. From the view of the digital twin-driven virtual model-based one, it includes non-deep learning methods and deep learning methods. Non-deep learning methods include the wiener process, gamma process, hidden Markov model (HMM), regression-based model, and proportional hazard model. Deep learning methods include deep neural networks (DNN), deep belief networks (DBN), convolutional neural networks (CNN), and recurrent neural networks (RNN). It mainly summarizes the performance degradation and life test of various models in gear and evaluates the advantages and disadvantages of various methods. In addition, it encourages future works.

References

1.
Nejad
,
A. R.
,
Guo
,
Y.
,
Gao
,
Z.
, and
Moan
,
T.
,
2016
, “
Development of a 5 Mw Reference Gearbox for Offshore Wind Turbines
,”
Wind Energy
,
19
(
6
), pp.
1089
1106
. 10.1002/we.1884
2.
Schneider
,
T.
,
Kruse
,
T.
,
Kuester
,
B.
,
Stonis
,
M.
, and
Overmeyer
,
L.
,
2018
, “
Evaluation of an Energy Self-Sufficient Sensor for Monitoring Marine Gearboxes
,”
Procedia Manufacturing
,
24
, pp.
135
140
. 10.1016/j.promfg.2018.06.019
3.
Vazquez-Hernandez
,
C.
,
Serrano-Gonzalez
,
J.
, and
Centeno
,
G.
,
2017
, “
A Market-Based Analysis on the Main Characteristics of Gearboxes Used in Onshore Wind Turbines
,”
Energies
,
10
(
11
), p.
1686
. 10.3390/en10111686
4.
Teng
,
W.
,
Ding
,
X.
,
Zhang
,
X. L.
,
Liu
,
Y. B.
, and
Ma
,
Z. Y.
,
2016
, “
Multi-Fault Detection and Failure Analysis of Wind Turbine Gearbox Using Complex Wavelet Transform
,”
Renewable Energy
,
93
, pp.
591
598
. 10.1016/j.renene.2016.03.025
5.
Antoni
,
J.
, and
Randall
,
R. B.
,
2002
, “
Differential Diagnosis of Gear and Bearing Faults
,”
ASME J. Vib. Acoust. Trans.
,
124
(
2
), pp.
165
171
. 10.1115/1.1456906
6.
Moshrefzadeh
,
A.
, and
Fasana
,
A.
,
2017
, “
Planetary Gearbox With Localised Bearings and Gears Faults: Simulation and Time/Frequency Analysis
,”
Meccanica
,
52
(
15
), pp.
3759
3779
. 10.1007/s11012-017-0680-7
7.
Kumar
,
S.
,
Goyal
,
D.
,
Dang
,
R. K.
,
Dhami
,
S. S.
, and
Pabla
,
B. S.
,
2018
, “
Condition Based Maintenance of Bearings and Gears for Fault Detection—A Review
,”
Mater. Today: Proc.
,
5
(
2
), pp.
6128
6137
. 10.1016/j.matpr.2017.12.219
8.
Bozca
,
M.
,
2018
, “
Transmission Error Model-Based Optimisation of the Geometric Design Parameters of an Automotive Transmission Gearbox to Reduce Gear-Rattle Noise
,”
Appl. Acoust.
,
130
, pp.
247
259
. 10.1016/j.apacoust.2017.10.005
9.
Park
,
S.
,
Kim
,
S.
, and
Choi
,
J. H.
,
2018
, “
Gear Fault Diagnosis Using Transmission Error and Ensemble Empirical Mode Decomposition
,”
Mech. Syst. Signal Process.
,
108
, pp.
262
275
. 10.1016/j.ymssp.2018.02.028
10.
Ghosh
,
S. S.
, and
Chakraborty
,
G.
,
2016
, “
On Optimal Tooth Profile Modification for Reduction of Vibration and Noise in Spur Gear Pairs
,”
Mech. Mach. Theory
,
105
, pp.
145
163
. 10.1016/j.mechmachtheory.2016.06.008
11.
Bian
,
X. X.
,
Li
,
X. L.
, and
Zhu
,
X. L.
,
2018
, “
Study on Random Fracture and Crack Growth of Gear Tooth Waist
,”
J. Fail. Anal. Prev.
,
18
(
1
), pp.
121
129
. 10.1007/s11668-018-0388-6
12.
Choudhary
,
V. V.
, and
Jamgekar
,
R.S.
,
2016
, “
Condition Monitoring: A Convenient Technique for Vibration Analysis of Tooth Failure in Gear Box
,”
Int. J. Recent Technol. Mech. Electr. Eng.
,
3
(
10
), pp.
4
9
.
13.
Fukumasu
,
N. K.
,
Machado
,
G. A. A.
,
Souza
,
R. M.
, and
Machado
,
I. F.
,
2016
, “
Stress Analysis to Improve Pitting Resistance in Gear Teeth
,”
Procedia Cirp
,
45
, pp.
255
258
. 10.1016/j.procir.2016.02.349
14.
Tyaginov
,
S.
,
Bina
,
M.
,
Franco
,
J.
,
Wimmer
,
Y.
,
Osintsev
,
D.
,
Kaczer
,
B.
, and
Grasser
,
T.
,
2014
, “
A Predictive Physical Model for Hot-Carrier Degradation in Ultra-scaled Mosfets
,”
Proceedings of International Conference on Simulation of Semiconductor Processes and Devices (Sispad)
,
Yokohama, Japan
,
Sept. 9–11
, pp.
89
92
.
15.
Louit
,
D. M.
,
Pascual
,
R.
, and
Jardine
,
A. K. S.
,
2009
, “
A Practical Procedure for the Selection of Time-to-Failure Models Based on the Assessment of Trends in Maintenance Data
,”
Reliab. Eng. Syst. Saf.
,
94
(
10
), pp.
1618
1628
. 10.1016/j.ress.2009.04.001
16.
Longadge
,
R.
, and
Dongre
,
S.
,
2013
, “
Class Imbalance Problem in Data Mining Review
,”
arXiv preprint
. arXiv:13051707
17.
Ademujimi
,
T. T.
,
Brundage
,
M. P.
, and
Prabhu
,
V. V.
,
2017
, “
A Review of Current Machine Learning Techniques Used in Manufacturing Diagnosis
,”
Proceedings of IFIP International Conference on Advances in Production Management Systems
,
Hamburg, Germany
,
Sept. 3–7
, pp.
407
415
.
18.
Ali
,
M. Z.
,
Shabbir
,
M. N. S. K.
,
Liang
,
X. D.
,
Zhang
,
Y.
, and
Hu
,
T.
,
2019
, “
Machine Learning-Based Fault Diagnosis for Single- and Multi-faults in Induction Motors Using Measured Stator Currents and Vibration Signals
,”
IEEE Trans. Ind. Appl.
,
55
(
3
), pp.
2378
2391
. 10.1109/TIA.2019.2895797
19.
Lei
,
Y. G.
,
Yang
,
B.
,
Jiang
,
X. W.
,
Jia
,
F.
,
Li
,
N. P.
, and
Nandi
,
A. K.
,
2020
, “
Applications of Machine Learning to Machine Fault Diagnosis: A Review and Roadmap
,”
Mech. Syst. Signal Process.
,
138
, p.
106587
. 10.1016/j.ymssp.2019.106587
20.
Anis
,
M. D. S. T.
, and
Lee
,
C. G.
,
2020
, “
Optimal Rule Estimation: A State-of-Art Digital Twin Application
,”
Proceedings of 2020 Annual Reliability and Maintainability Symposium (RAMS)
,
Palm Springs, CA
,
Jan. 27–30
, IEEE, pp.
1
7
.
21.
He
,
B.
,
Cao
,
X.
, and
Gu
,
Z.
,
2021
, “
Data Fusion-Based Sustainable Digital Twin System of Intelligent Detection Robotics
,”
J. Cleaner Prod.
,
280
, p.
124181
. 10.1016/j.jclepro.2020.124181
22.
Tao
,
F.
,
Zhang
,
M.
,
Liu
,
Y. S.
, and
Nee
,
A. Y. C.
,
2018
, “
Digital Twin Driven Prognostics and Health Management for Complex Equipment
,”
CIRP Ann.
,
67
(
1
), pp.
169
172
. 10.1016/j.cirp.2018.04.055
23.
Djurdjanovic
,
D.
,
Lee
,
J.
, and
Ni
,
J.
,
2003
, “
Watchdog Agent—An Infotronics-Based Prognostics Approach for Product Performance Degradation Assessment and Prediction
,”
Adv. Eng. Inf.
,
17
(
3–4
), pp.
109
125
. 10.1016/j.aei.2004.07.005
24.
Guo
,
L.
, and
Chen
,
J.
,
2008
, “
A Review on Machinery Performance Degradation Assessment and Prediction
,”
J. Vib. Shock
,
27
(
S
), pp.
67
70
.
25.
Wang
,
H.
,
Ma
,
H.
,
Xu
,
H.
,
Zhu
,
L.
, and
Jia
,
M.
,
2013
, “
Review on Machinery Performance Degradation Assessment and Prognostics
,”
J. Mech. Strength
,
35
, pp.
716
723
. 10.1016/0364-5916(83)90004-4
26.
Wan
,
X.
,
Wang
,
D.
,
Peter
,
W. T.
,
Xu
,
G.
, and
Zhang
,
Q.
,
2016
, “
A Critical Study of Different Dimensionality Reduction Methods for Gear Crack Degradation Assessment Under Different Operating Conditions
,”
Measurement
,
78
, pp.
138
150
. 10.1016/j.measurement.2015.09.032
27.
Wu
,
S.
,
Zuo
,
M. J.
, and
Parey
,
A.
,
2008
, “
Simulation of Spur Gear Dynamics and Estimation of Fault Growth
,”
J. Sound Vib.
,
317
(
3–5
), pp.
608
624
. 10.1016/j.jsv.2008.03.038
28.
Feng
,
P.
,
Borghesani
,
P.
,
Chang
,
H.
,
Smith
,
W.
,
Randall
,
R.
, and
Peng
,
Z.
,
2019
, “
Monitoring Gear Surface Degradation Using Cyclostationarity of Acoustic Emission
,”
Mech. Syst. Signal Process.
,
131
, pp.
199
221
. 10.1016/j.ymssp.2019.05.055
29.
Guilbault
,
R.
, and
Lalonde
,
S.
,
2016
, “
Early Diagnostic of Concurrent Gear Degradation Processes Progressing Under Time-Varying Loads
,”
Mech. Syst. Signal Process.
,
76
, pp.
337
352
. 10.1016/j.ymssp.2016.01.017
30.
Amarnath
,
M.
, and
Lee
,
S. K.
,
2015
, “
Assessment of Surface Contact Fatigue Failure in a Spur Geared System Based on the Tribological and Vibration Parameter Analysis
,”
Measurement
,
76
, pp.
32
44
. 10.1016/j.measurement.2015.08.020
31.
Qiu
,
Y.
,
Chen
,
L.
,
Feng
,
Y.
, and
Xu
,
Y.
,
2017
, “
An Approach of Quantifying Gear Fatigue Life for Wind Turbine Gearboxes Using Supervisory Control and Data Acquisition Data
,”
Energies
,
10
(
8
), p.
1084
. 10.3390/en10081084
32.
Kundu
,
P.
,
Darpe
,
A. K.
, and
Kulkarni
,
M. S.
,
2020
, “
Gear Pitting Severity Level Identification Using Binary Segmentation Methodology
,”
Struct. Control Health Monit.
,
27
(
3
), p.
e2478
. 10.1002/stc.2478
33.
Xu
,
Z. F.
, and
Sao
,
R. P.
,
2009
, “
Forecast of Sound Pressure Level of Gear Systems and Fault Diagnosis Based on Acoustics
,”
Comput. Meas. Control
,
17
(
9
), pp.
1688
1691
. https://en.cnki.com.cn/Article_en/CJFDTotal-JZCK200909007.htm
34.
Booyse
,
W.
,
Wilke
,
D. N.
, and
Heyns
,
S.
,
2020
, “
Deep Digital Twins for Detection, Diagnostics and Prognostics
,”
Mech. Syst. Signal Process.
,
140
, p.
106612
. 10.1016/j.ymssp.2019.106612
35.
Pan
,
Y.
,
Hong
,
R.
,
Chen
,
J.
,
Singh
,
J.
, and
Jia
,
X.
,
2020
, “
Performance Degradation Assessment of a Wind Turbine Gearbox Based on Multi-Sensor Data Fusion
,”
Mech. Mach. Theory
,
137
, pp.
509
526
. 10.1016/j.mechmachtheory.2019.03.036
36.
Chen
,
X.
,
Li
,
H.
,
Cheng
,
G.
, and
Peng
,
L.
,
2019
, “
Study on Planetary Gear Degradation State Recognition Method Based on the Features With Multiple Perspectives and Lltsa
,”
IEEE Access
,
7
, pp.
7565
7576
. 10.1109/ACCESS.2019.2890857
37.
Wang
,
D.
,
Peter
,
W. T.
,
Guo
,
W.
, and
Miao
,
Q.
,
2010
, “
Support Vector Data Description for Fusion of Multiple Health Indicators for Enhancing Gearbox Fault Diagnosis and Prognosis
,”
Meas. Sci. Technol.
,
22
(
2
), p.
025102
. 10.1088/0957-0233/22/2/025102
38.
Moghaddass
,
R.
, and
Zuo
,
M. J.
,
2014
, “
Multistate Degradation and Supervised Estimation Methods for a Condition-Monitored Device
,”
IIE Trans.
,
46
(
2
), pp.
131
148
. 10.1080/0740817X.2013.770188
39.
Wang
,
D.
,
Miao
,
Q.
,
Zhou
,
Q.
, and
Zhou
,
G.
,
2015
, “
An Intelligent Prognostic System for Gear Performance Degradation Assessment and Remaining Useful Life Estimation
,”
ASME J. Vib. Acoust.
,
137
(
2
), p.
021004
. 10.1115/1.4028833
40.
Pan
,
Y.
,
Hong
,
R.
,
Chen
,
J.
,
Singh
,
J.
, and
Jia
,
X.
,
2019
, “
Performance Degradation Assessment of a Wind Turbine Gearbox Based on Multi-sensor Data Fusion
,”
Mech. Mach. Theory
,
137
, pp.
509
526
. 10.1016/j.mechmachtheory.2019.03.036
41.
Zhao
,
W.
,
Siegel
,
D.
,
Lee
,
J.
, and
Su
,
L.
,
2013
, “
An Integrated Framework of Drivetrain Degradation Assessment and Fault Localization for Offshore Wind Turbines
,”
Int. J. Prog. Health Manag.
,
4
, pp.
46
58
.
42.
Vechart
,
A. P.
,
Rios
,
J.
,
McReynolds
,
M.
, and
Szpylman
,
J.
,
2019
, “
Leveraging Digital Clones for Prognostics Health Management
,”
AIAC18: 18th Australian International Aerospace Congress (2019): HUMS-11th Defence Science and Technology (DST) International Conference on Health and Usage Monitoring (HUMS 2019): ISSFD-27th International Symposium on Space Flight Dynamics (ISSFD)
,
Melbourne, Australia
,
Feb. 24–28
, p.
910
.
43.
British Standard BS 7848:1996 (ISO 10825:1995). GEARS—Wear and Damage to Gear Teeth—Terminology
.
44.
Luo
,
J. H.
,
Bixby
,
A.
,
Qiao
,
L.
, and
Kawamoto
,
M.
,
2003
, “
An Interacting Multiple Model Approach to Model-Based Prognostics
,”
2003 IEEE International Conference on Systems, Man and Cybernetics, Vols. 1–5, Conference Proceedings
,
Washington, DC
,
Oct. 8
, pp.
189
194
.
45.
Thirumurugan
,
R.
, and
Gnanasekar
,
N.
,
2020
, “
Influence of Finite Element Model, Load-Sharing and Load Distribution on Crack Propagation Path in Spur Gear Drive
,”
Eng. Fail. Anal.
,
110
, p.
104383
. 10.1016/j.engfailanal.2020.104383
46.
Ritchie
,
R.
, and
Knott
,
J.
,
1973
, “
Mechanisms of Fatigue Crack Growth in Low Alloy Steel
,”
Acta Metall.
,
21
(
5
), pp.
639
648
. 10.1016/0001-6160(73)90073-4
47.
Forman
,
R. G.
,
Kearney
,
V. E.
, and
Engle
,
R. M.
,
1967
, “
Numerical Analysis of Crack Propagation in Cyclic-Loaded Structures
,”
ASME J. Basic Eng.
,
89
(
3
), pp.
459
463
. 10.1115/1.3609637
48.
McEvily
,
A. J. G. J.
,
1978
,
Advances in Research on the Strength and Fracture of Materials
,
D.M.R. TAPLIN
,
Elsevier
,
New York
, pp.
1293
1298
.
49.
Forman
,
R.
,
Shivakumar
,
V.
,
Cardinal
,
J.
,
Williams
,
L.
, and
McKeighan
,
P.
,
2005
, “
Fatigue Crack Growth Database for Damage Tolerance Analysis
,” https://ntrs.nasa.gov/search.jsp?R=20050232857.
50.
Walker
,
K.
,
1970
,
Effects of Environment and Complex Load History on Fatigue Life
,
M.
Rosenfeld
, ed.,
ASTM International
,
West Conshohocken, PA
, pp.
1
14
.
51.
Ritchie
,
R. O.
,
1999
, “
Mechanisms of Fatigue-Crack Propagation in Ductile and Brittle Solids
,”
Int. J. Fract.
,
100
(
1
), pp.
55
83
. 10.1023/A:1018655917051
52.
Elber
,
W.
,
1971
,
Damage Tolerance in Aircraft Structures
,
M.
Rosenfeld
, ed.,
ASTM International
,
West Conshohocken, PA
, pp.
230
242
.
53.
Allen
,
R. J.
,
Booth
,
G. S.
, and
Jutla
,
T.
,
1988
, “
A Review of Fatigue Crack Growth Characterisation by Linear Elastic Fracture Mechanics (Lefm). Part Ii—Advisory Documents and Applications Within National Standards
,”
Fatigue Fract. Eng. Mater. Struct.
,
11
(
2
), pp.
71
108
. 10.1111/j.1460-2695.1988.tb01162.x
54.
Papangelo
,
A.
,
Guarino
,
R.
,
Pugno
,
N.
, and
Ciavarella
,
M.
,
2019
, “
On Unified Crack Propagation Laws
,”
Eng. Fract. Mech.
,
207
, pp.
269
276
. 10.1016/j.engfracmech.2018.12.023
55.
Paris
,
P.
, and
Erdogan
,
F.
,
1963
, “
A Critical Analysis of Crack Propagation Laws
,”
J. Fluids Eng.
,
85
(
4
), pp.
528
533
. 10.1115/1.3656900
56.
Bhargav desai
,
P. M. A. M.
,
2016
, “
Analysis of Fatigue Crack Growth Rate and Service Life of Spur Gear
,”
Int. Eng. Res. J.
,
2
(
3
), pp.
1685
1689
.
57.
Lewicki
,
D. G.
, and
Ballarini
,
R.
,
1998
, “
Gear Crack Propagation Investigations
,”
Tribotest
,
5
(
2
), pp.
157
172
. 10.1002/tt.3020050206
58.
Lewicki
,
D. G.
,
1998
,
Three-Dimensional Gear Crack Propagation Studies
,
National Aeronautics and Space Administration, Lewis Research Center, MCI
,
Paris,France
, pp.
2311
2323
.
59.
Kramberger
,
J.
,
Potrc
,
I.
, and
Flasker
,
J.
,
2002
, “
Prediction of 3-D Crack Growth in Thin Rim-Gears
,”
DESIGN 2002: Proceedings of the 7th International Design Conference, Vols. 1 and 2
,
Dubrovnik, Croatia
,
May 14–17
.
60.
Agarwal
,
V.
,
Zagade
,
P. R.
,
Khan
,
D.
, and
Gautham
,
B. P.
,
2014
, “
Fatigue Crack Propagation in a Gear Tooth in the Presence of an Inclusion
,”
Int. J. Comput. Methods Eng. Sci. Mech.
,
15
(
3
), pp.
247
252
. 10.1080/15502287.2014.882434
61.
Rad
,
A. A.
,
Forouzan
,
M. R.
, and
Dolatabadi
,
A. S.
,
2014
, “
Three-Dimensional Fatigue Crack Growth Modelling in a Helical Gear Using Extended Finite Element Method
,”
Fatigue Fract. Eng. Mater. Struct.
,
37
(
6
), pp.
581
591
. 10.1111/ffe.12140
62.
Birahima
,
G.
,
YShao
,
Y. M.
, and
Chen
,
Z. G.
,
2017
, “
Prediction of Gear Tooth Crack Propagation Path Based on Pseudo Evolutionary Structural Optimization
,”
Int. J. Cond. Monit. Diag. Eng. Manage.
,
20
(
1
), pp.
29
34
. ISSN:1363-7681
63.
Wang
,
W. Y.
,
Hu
,
W. P.
, and
Armstrong
,
N.
,
2017
, “
Fatigue Crack Prognosis Using Bayesian Probabilistic Modelling
,”
Mech. Eng. J.
,
4
(
5
), p.
16-00702
. 10.1299/mej.16-00702
64.
Tuegel
,
E. J.
,
Ingraffea
,
A. R.
,
Eason
,
T. G.
, and
Spottswood
,
S. M.
,
2011
, “
Reengineering Aircraft Structural Life Prediction Using a Digital Twin
,”
Int. J. Aerospace Eng.
,
2011
, pp.
1
14
. 10.1155/2011/154798
65.
Ye
,
Y. M.
,
Yang
,
Q.
,
Yang
,
F.
,
Huo
,
Y. Y.
, and
Meng
,
S. H.
,
2020
, “
Digital Twin for the Structural Health Management of Reusable Spacecraft: A Case Study
,”
Eng. Fract. Mech.
,
234
, p.
107076
. 10.1016/j.engfracmech.2020.107076
66.
Leser
,
P. E.
,
Warner
,
J. E.
,
Leser
,
W. P.
,
Bomarito
,
G. F.
,
Newman
,
J. A.
, and
Hochhalter
,
J. D.
,
2020
, “
A Digital Twin Feasibility Study (Part Ii): Non-deterministic Predictions of Fatigue Life Using In-situ Diagnostics and Prognostics
,”
Eng. Fract. Mech.
,
229
, p.
106903
. 10.1016/j.engfracmech.2020.106903
67.
Yeratapally
,
S. R.
,
Leser
,
P. E.
,
Hochhalter
,
J. D.
,
Leser
,
W. P.
, and
Ruggles
,
T. J.
,
2020
, “
A Digital Twin Feasibility Study (Part I): Non-Deterministic Predictions of Fatigue Life in Aluminum Alloy 7075-T651 Using a Microstructure-Based Multi-scale Model
,”
Eng. Fract. Mech.
,
228
, p.
106888
. 10.1016/j.engfracmech.2020.106888
68.
Vullo
,
V.
,
2020
,
Gears
, Vol.
11
,
Springer, Cham
, pp.
73
147
.
69.
Wang
,
W.
,
Liu
,
H.
,
Zhu
,
C.
,
Wei
,
P.
, and
Tang
,
J.
,
2019
, “
Effects of Microstructure on Rolling Contact Fatigue of a Wind Turbine Gear Based on Crystal Plasticity Modeling
,”
Int. J. Fatigue
,
120
, pp.
73
86
. 10.1016/j.ijfatigue.2018.10.022
70.
Liu
,
H. J.
,
Liu
,
H. L.
,
Zhu
,
C. C.
, and
Zhou
,
Y.
,
2019
, “
A Review on Micropitting Studies of Steel Gears
,”
Coatings
,
9
(
1
), p.
42
. 10.3390/coatings9010042
71.
Janaswamy
,
P. K.
,
Chowdary
,
J. R.
,
Sasanka
,
C. T.
, and
Devarakonda
,
S. K.
,
2019
, “
Life Prediction of Spur Gear Under Fully Reversed Loading Using Total Life Approach and Crack-Initiation Method in Fem
,”
Aksaray Univ. J. Sci. Eng.
,
3
(
2
), p.
498344
. 10.29002/asujse.498344
72.
Feng
,
S.
, and
Han
,
X.
,
2019
, “
A Novel Multi-grid Based Reanalysis Approach for Efficient Prediction of Fatigue Crack Propagation
,”
Comput. Methods Appl. Mech. Eng.
,
353
, pp.
107
122
. 10.1016/j.cma.2019.05.001
73.
Ghaffari
,
M. A.
,
Pahl
,
E.
, and
Xiao
,
S. P.
,
2015
, “
Three Dimensional Fatigue Crack Initiation and Propagation Analysis of a Gear Tooth Under Various Load Conditions and Fatigue Life Extension With Boron/Epoxy Patches
,”
Eng. Fract. Mech.
,
135
, pp.
126
146
. 10.1016/j.engfracmech.2014.12.022
74.
Endeshaw
,
H. B.
,
Ekwaro-Osire
,
S.
,
Alemayehu
,
F. M.
, and
Dias
,
J. P.
,
2017
, “
Evaluation of Fatigue Crack Propagation of Gears Considering Uncertainties in Loading and Material Properties
,”
Sustainability
,
9
(
12
), p.
2200
. 10.3390/su9122200
75.
Xing
,
Z. G.
,
Wang
,
Z. Y.
,
Wang
,
H. D.
, and
Shan
,
D. B.
,
2019
, “
Bending Fatigue Behaviors Analysis and Fatigue Life Prediction of 20cr2ni4 Gear Steel With Different Stress Concentrations Near Non-metallic Inclusions
,”
Materials
,
12
(
20
), pp.
34
43
. doi.org/10.3390/ma12203443
76.
He
,
H.
,
Liu
,
H.
,
Zhu
,
C.
,
Wei
,
P.
, and
Tang
,
J.
,
2020
, “
Analysis of the Fatigue Crack Initiation of a Wind Turbine Gear Considering Load Sequence Effect
,”
Int. J. Damage Mech.
,
29
(
2
), pp.
207
225
. 10.1177/1056789519836272
77.
Qin
,
W. J.
, and
Guan
,
C. Y.
,
2014
, “
An Investigation of Contact Stresses and Crack Initiation in Spur Gears Based on Finite Element Dynamics Analysis
,”
Int. J. Mech. Sci.
,
83
, pp.
96
103
. 10.1016/j.ijmecsci.2014.03.035
78.
Miner
,
M. A.
,
1945
, “
Cumulative Damage in Fatigue
,”
J. Appl. Mech.
,
12
, pp.
149
164
. 10.1007/978-3-642-99854-6_35
79.
Hanumanna
,
D.
,
Narayanan
,
S.
, and
Krishnamurthy
,
S.
,
1998
, “
Prediction of Fatigue Life of Gear Subjected to Varying Loads
,”
Def. Sci. J.
,
48
(
3
), pp.
277
285
. 10.14429/dsj.48.3948
80.
Deng
,
H. L.
,
Li
,
W.
,
Sakai
,
T.
, and
Sun
,
Z. D.
,
2015
, “
Very High Cycle Fatigue Failure Analysis and Life Prediction of Cr-Ni-W Gear Steel Based on Crack Initiation and Growth Behaviors
,”
Materials
,
8
(
12
), pp.
8338
8354
. 10.3390/ma8125459
81.
Shen
,
H. D.
,
Li
,
Z. Q.
,
Qi
,
L. L.
, and
Qiao
,
L.
,
2018
, “
A Method for Gear Fatigue Life Prediction Considering the Internal Flow Field of the Gear Pump
,”
Mech. Syst. Signal Process.
,
99
, pp.
921
929
. 10.1016/j.ymssp.2016.09.022
82.
Jia
,
P.
,
Liu
,
H. J.
,
Zhu
,
C. H.
,
Wu
,
W.
, and
Lu
,
G. H.
,
2020
, “
Contact Fatigue Life Prediction of a Bevel Gear Under Spectrum Loading
,”
Front. Mech. Eng.
,
15
(
1
), pp.
123
132
. 10.1007/s11465-019-0556-8
83.
Lewicki
,
D. G.
,
1998
,
Three-Dimensional Gear Crack Propagation Studies
,
National Aeronautics and Space Administration, Lewis Research Center, MCI
,
Paris,France
, pp.
2311
2323
.
84.
Zhidchenko
,
V.
,
Handroos
,
H.
, and
Kovartsev
,
A.
,
2019
, “
Fatigue Life Estimation of Hydraulically Actuated Mobile Working Machines Using Internet of Things and Digital Twin Concepts
,”
J. Phys.: Conf. Ser.
,
1368
(
4
), p.
042025
. 10.1088/1742-6596/1368/4/042025
85.
Zhidchenko
,
V.
,
Handroos
,
H.
, and
Kovartsev
,
A.
,
2019
, “
On-line Calculation of Fatigue in Hydraulically Actuated Heavy Equipment Using Iot and Digital Twin Concepts
,”
Proceedings of the V International Conference on Information Technology and Nanotechnology (ITNT-2019), Sbornik Trudov ITNT
,
Samara, Russia
,
May 21–24
, pp.
382
389
.
86.
Algin
,
V. B.
,
Ishin
,
M.
, and
Paddubka
,
S.
,
2018
, “
Models and Approaches in Design and Diagnostics of Vehicles Planetary Transmissions
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
393
(
1
), p.
012042
. 10.1088/1757-899X/393/1/012042
87.
Zhu
,
S. P.
,
Xu
,
S.
,
Hao
,
M. F.
,
Liao
,
D.
, and
Wang
,
Q.
,
2019
, “
Stress-Strain Calculation and Fatigue Life Assessment of V-Shaped Notches of Turbine Disk Alloys
,”
Eng. Fail. Anal.
,
106
, p.
104187
. 10.1016/j.engfailanal.2019.104187
88.
Stribeck
,
R.
,
1901
, “
Kugellager Für Beliebige Belastungen (Ball Bearings for Any Stress), Zeitschrift Des Vereins Deutscher Ingenieure
,”
Zeitschrift des Vereins Deutscher Ingenieure
,
45
, pp.
73
79
.
89.
Castro
,
J.
,
Campos
,
A.
,
Sottomayor
,
A.
, and
Seabra
,
J.
,
2005
, “
Friction Coefficient Between Gear Teeth in Mixed Film Lubrication
,”
Tribol. Interface Eng. Ser.
,
48
, pp.
525
533
. 10.1016/S0167-8922(05)80054-9
90.
Castro
,
J.
, and
Seabra
,
J.
,
2008
, “
Global and Local Analysis of Gear Scuffing Tests Using a Mixed Film Lubrication Model
,”
Tribol. Int.
,
41
(
4
), pp.
244
255
. 10.1016/j.triboint.2007.07.005
91.
Ciulli
,
E.
,
Bartilotta
,
I.
,
Polacco
,
A.
,
Manconi
,
S.
,
Vela
,
D.
, and
Paleotti
,
F. S. G.
,
2010
, “
A Model for Scuffing Prediction
,”
Strojniski Vestnik J. Mech. Eng.
,
56
(
4
), pp.
231
238
. https://www.academia.edu/19055766/A_Model_for_Scuffing_Prediction
92.
Lee
,
S. K.
, and
Amarnath
,
M.
,
2016
, “
Experimental Investigations to Establish Correlation Between Stribeck Curve, Specific Film Thickness and Statistical Parameters of Vibration and Sound Signals in a Spur Gear System
,”
J. Vib. Control
,
22
(
6
), pp.
1667
1681
. 10.1177/1077546314544164
93.
Stefano
,
C.
,
Nicola
,
D.
, and
Franco
,
F.
,
2020
, “
The Design of a Digital-Twin for Predictive Maintenance
,”
25th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA)
,
Vienna, Austria
,
Sept. 8–11
, pp.
1781
1788
.
94.
Wu
,
T. Y.
,
Chen
,
J.
, and
Wang
,
C.
,
2012
, “
Characterization of Gear Faults in Variable Rotating Speed Using Hilbert-Huang Transform and Instantaneous Dimensionless Frequency Normalization
,”
Mech. Syst. Signal Process.
,
30
, pp.
103
122
. 10.1016/j.ymssp.2012.01.022
95.
Feng
,
K.
,
Borghesani
,
P.
,
Smith
,
W. A.
,
Randall
,
R. B.
,
Chin
,
Z. Y.
,
Ren
,
J.
, and
Peng
,
Z.
,
2019
, “
Vibration-Based Updating of Wear Prediction for Spur Gears
,”
Wear
,
426
, pp.
1410
1415
. 10.1016/j.wear.2019.01.017
96.
Pan
,
D.
,
Zhao
,
Y.
,
Li
,
N.
, and
Wang
,
X. G.
,
2012
, “
The Wear Life Prediction Method of Gear System
,”
J. Harbin Inst. Technol.
,
9
, pp.
29
33
. http://en.cnki.com.cn/Article_en/CJFDTotal-HEBX201209007.htm
97.
Xue
,
X.
,
Huo
,
Q.
, and
Hong
,
L.
,
2019
, “
Fretting Wear-Fatigue Life Prediction for Aero-Engine’s Involute Spline Couplings Based on Abaqus
,”
J. Aerosp. Eng.
,
32
(
6
), p.
04019081
. 10.1061/(ASCE)AS.1943-5525.0001058
98.
Akbarzadeh
,
S.
, and
Khonsari
,
M.
,
2009
, “
Prediction of Steady State Adhesive Wear in Spur Gears Using the EHL Load Sharing Concept
,”
J. Mech.
,
131
(
2
), p.
024503
. 10.1115/1.3075859
99.
Wang
,
H.
,
Zhou
,
C.
,
Lei
,
Y.
, and
Liu
,
Z.
,
2019
, “
An Adhesive Wear Model for Helical Gears in Line-Contact Mixed Elastohydrodynamic Lubrication
,”
Wear
,
426
, pp.
896
909
. 10.1016/j.wear.2019.01.104
100.
Zhu
,
D.
,
Martini
,
A.
,
Wang
,
W.
,
Hu
,
Y.
,
Lisowsky
,
B.
, and
Wang
,
Q. J.
,
2007
, “
Simulation of Sliding Wear in Mixed Lubrication
,”
ASME J. Tribol.
,
129
(
3
), pp.
544
552
. 10.1115/1.2736439
101.
Ding
,
Y.
, and
Gear
,
J.
,
2009
, “
Spalling Depth Prediction Model
,”
Wear
,
267
(
5–8
), pp.
1181
1190
. 10.1016/j.wear.2008.12.064
102.
Drewniak
,
J.
, and
Rysiński
,
J.
,
2013
, “
Evaluation of Fatigue Life of Cylindrical Geared Wheels
,”
Solid State Phenom.
,
199
, pp.
93
98
. www.scientific.net/SSP.199.93
103.
Li
,
S.
,
Kahraman
,
A.
, and
Klein
,
M.
,
2012
, “
A Fatigue Model for Spur Gear Contacts Operating Under Mixed Elastohydrodynamic Lubrication Conditions
,”
ASME J. Mech. Des.
,
134
(
4
), p.
041007
. 10.1115/1.4005655
104.
Wen
,
Y. Q.
,
Tang
,
J. Y.
, and
Wei
,
Z.
,
2020
, “
Influence of Distribution Parameters of Rough Surface Asperities on the Contact Fatigue Life of Gears
,”
Proc. Inst. Mech. Eng., Part J
,
234
(
6
), pp.
821
832
. 10.1177/1350650119866037
105.
Kramberger
,
J.
,
Šraml
,
M.
,
Glodež
,
S.
,
Flašker
,
J.
, and
Potrč
,
I.
,
2004
, “
Computational Model for the Analysis of Bending Fatigue in Gears
,”
Comput. Struct.
,
82
(
23–26
), pp.
2261
2269
. 10.1016/j.compstruc.2003.10.028
106.
Si
,
X. S.
,
Wang
,
W.
,
Hu
,
C. H.
, and
Zhou
,
D. H.
,
2011
, “
Remaining Useful Life Estimation–A Review on the Statistical Data Driven Approaches
,”
Eur. J. Operat. Res.
,
213
(
1
), pp.
1
14
. 10.1016/j.ejor.2010.11.018
107.
Zhang
,
Z.
,
Si
,
X.
,
Hu
,
C.
, and
Lei
,
Y.
,
2018
, “
Degradation Data Analysis and Remaining Useful Life Estimation: A Review on Wiener-Process-Based Methods
,”
Eur. J. Operat. Res.
,
271
(
3
), pp.
775
796
. 10.1016/j.ejor.2018.02.033
108.
Kahle
,
W.
, and
Lehmann
,
A.
,
2010
,
Advances in Degradation Modeling
,
M.
Nikulin
,
N.
Limnios
,
N.
Balakrishnan
,
W.
Kahle
, and
C.
Huber-Carol
, eds.,
Birkhäuser
,
Boston
, pp.
127
146
.
109.
Malliaris
,
A. G.
,
1990
,
Econometrics. The New Palgrave
,
J.
Eatwell
,
M.
Milgate
, and
P.
Newman
, eds.,
Palgrave Macmillan
,
London
.
110.
Qin
,
A.
,
Zhang
,
Q.
,
Hu
,
Q.
,
Sun
,
G.
,
He
,
J.
, and
Lin
,
S.
,
2017
, “
Remaining Useful Life Prediction for Rotating Machinery Based on Optimal Degradation Indicator
,”
Shock Vib.
,
2017
, p.
6754968
. 10.1155/2017/6754968
111.
Wang
,
X.
,
Lin
,
S.
,
Wang
,
S.
,
He
,
Z.
, and
Zhang
,
C.
,
2016
, “
Remaining Useful Life Prediction Based on the Wiener Process for an Aviation Axial Piston Pump
,”
Chin. J. Aeronaut.
,
29
(
3
), pp.
779
788
. 10.1016/j.cja.2015.12.020
112.
Xu
,
X.
,
Yu
,
C.
,
Tang
,
S.
,
Sun
,
X.
,
Si
,
X.
, and
Wu
,
L.
,
2019
, “
Remaining Useful Life Prediction of Lithium-Ion Batteries Based on Wiener Processes With Considering the Relaxation Effect
,”
Energies
,
12
(
9
), p.
1685
. 10.3390/en12091685
113.
Peng
,
W.
,
Li
,
Y. F.
,
Mi
,
J.
,
Yu
,
L.
, and
Huang
,
H. Z.
,
2016
, “
Reliability of Complex Systems Under Dynamic Conditions: A Bayesian Multivariate Degradation Perspective
,”
Reliab. Eng. Syst. Saf.
,
153
, pp.
75
87
. 10.1016/j.ress.2016.04.005
114.
Ke
,
X.
, and
Xu
,
Z.
,
2015
, “
A Model for Degradation Prediction With Change Point Based on Wiener Process
,”
Proceedings of IEEE International Conference on Industrial Engineering and Engineering Management (IEEM)
,
Singapore
,
Dec. 6–9
, pp.
986
990
.
115.
Paroissin
,
C.
,
2015
, “
Inference for the Wiener Process With Random Initiation Time
,”
IEEE Trans. Reliab.
,
65
(
1
), pp.
147
157
. 10.1109/TR.2015.2456056
116.
Si
,
X. S.
,
Wang
,
W.
,
Hu
,
C. H.
,
Chen
,
M. Y.
, and
Zhou
,
D. H.
,
2013
, “
A Wiener-Process-Based Degradation Model With a Recursive Filter Algorithm for Remaining Useful Life Estimation
,”
Mech. Syst. Signal Process.
,
35
(
1–2
), pp.
219
237
. 10.1016/j.ymssp.2012.08.016
117.
Naji
,
L. F.
, and
Rasheed
,
H. A.
,
2019
, “
Bayesian Estimation for Two Parameters of Gamma Distribution Under Generalized Weighted Loss Function
,”
Iraqi J. Sci.
,
60
(
5
), pp.
1161
1171
. http://scbaghdad.edu.iq/eijs/index.php/eijs/article/view/871
118.
Zhou
,
Y.
,
Ma
,
L.
,
Mathew
,
J.
,
Kim
,
H.
, and
Wolff
,
R.
,
2009
, “
Asset Life Prediction Using Multiple Degradation Indicators and Lifetime Data: A Gamma-Based State Space Model Approach
,”
Proceedings of 8th International Conference on Reliability, Maintainability and Safety
,
Chengdu, China
,
July 20–24
, pp.
445
449
.
119.
Zhao
,
J. M.
, and
Feng
,
T. L.
,
2011
, “
Remaining Useful Life Prediction Based on Nonlinear State Space Model
,”
Proceedings of Prognostics and System Health Management Conference
,
Shenzhen, China
,
May 24–25
, pp.
1
5
.
120.
Ni
,
X.
,
Zhang
,
X.
,
Sun
,
F.
,
Zhao
,
J.
, and
Zhao
,
J.
,
2016
, “
An Adaptive State-Space Model for Predicting Remaining Useful Life of Planetary Gearbox
,”
Proceedings of Prognostics and System Health Management Conference (PHM-Chengdu)
,
Chengdu, China
,
Oct. 19–21
, pp.
1
6
.
121.
Zhang
,
Y.
,
Zhao
,
X.
,
Liu
,
W.
,
Zhang
,
J.
,
Jia
,
Y.
, and
Feng
,
T.
,
2011
, “
Research on Gearbox Wearing Prognosis Based on Gamma-State Space Model
,”
Proceedings of 2011 9th International Conference on Reliability, Maintainability and Safety
,
Guiyang, China
,
June 12–15
, pp.
279
283
.
122.
Kang
,
J. S.
,
Zhang
,
X. H.
, and
Wang
,
Y. J.
,
2011
, “
Continuous Hidden Markov Model Based Gear Fault Diagnosis and Incipient Fault Detection
,”
Proceedings of International Conference on Quality, Reliability, Risk, Maintenance, and Safety Engineering
,
Xi'an, China
,
June 17–19
, pp.
486
491
.
123.
Zheng
,
R. S.
,
Dong
,
X. M.
,
Hao
,
W. S.
,
Li
,
Y.
, and
Wang
,
R. X.
,
2014
, “
Application of Hidden Markov Models in Ball Mill Gearbox for Fault Diagnosis
,”
Adv. Mater. Res.
,
842
, pp.
401
404
. www.scientific.net/AMR.842.401
124.
Jia
,
Y.
,
Sun
,
L.
, and
Teng
,
H.
,
2015
, “
A Comparison Study of Hidden Markov Model and Particle Filtering Method: Application to Fault Diagnosis for Gearbox
,”
Proceedings of the IEEE 2012 Prognostics and System Health Management Conference
,
Beijing, China
,
May 23–25
.
125.
He
,
B.
,
Zhu
,
X.
, and
Zhang
,
D.
,
2020
, “
Boundary Encryption-Based Monte Carlo Learning Method for Workspace Modeling
,”
ASME J. Comput. Inf. Sci. Eng.
,
20
(
3
), p.
034502
. 10.1115/1.4046816
126.
Zaidi
,
S. S. H.
,
Aviyente
,
S.
,
Salman
,
M.
,
Shin
,
K. K.
, and
Strangas
,
E. G.
,
2010
, “
Prognosis of Gear Failures in Dc Starter Motors Using Hidden Markov Models
,”
IEEE Trans. Ind. Electron.
,
58
(
5
), pp.
1695
1706
. 10.1109/TIE.2010.2052540
127.
Gu
,
Y. K.
,
Xu
,
B.
,
Huang
,
H.
, and
Qiu
,
G.
,
2020
, “
A Fuzzy Performance Evaluation Model for a Gearbox System Using Hidden Markov Model
,”
IEEE Access
,
8
, pp.
30400
30409
. 10.1109/ACCESS.2020.2972810
128.
Ghosh
,
A. K.
,
Ullah
,
A. S.
, and
Kubo
,
A.
,
2019
, “
Hidden Markov Model-Based Digital Twin Construction for Futuristic Manufacturing Systems
,”
Artif. Intell. Eng. Des. Anal. Manuf.
,
33
(
03
), pp.
317
331
. 10.1017/S089006041900012X
129.
Le
,
T. T.
,
Bérenguer
,
C.
, and
Chatelain
,
F.
,
2015
, “
Multi-Branch Hidden Semi-Markov Modeling for RUL Prognosis
,”
Proceedings of 2015 Annual Reliability and Maintainability Symposium (RAMS)
,
Palm Harbor, FL
,
Jan. 26–29
, pp.
1
6
.
130.
Ramezani
,
S.
,
Moini
,
A.
, and
Riahi
,
M.
,
2019
, “
A Model to Determining the State of Degradation and Remaining Useful Life of Rotating Equipment, With a New Approach to Combination and Predicting Health Index
,”
Modares Mech. Eng.
,
19
(
10
), pp.
2351
2365
. https://mme.modares.ac.ir/browse.php?a_id=23660&sid=15&slc_lang=en
131.
Tian
,
Q.
, and
Wang
,
H.
,
2020
, “
An Ensemble Learning and Rul Prediction Method Based on Bearings Degradation Indicator Construction
,”
Appl. Sci.
,
10
(
1
), p.
346
. 10.3390/app10010346
132.
Joshuva
,
A.
,
Sugumaran
,
V.
,
Amarnath
,
M.
, and
Lee
,
S. K.
,
2016
, “
Remaining Life-Time Assessment of Gear Box Using Regression Model
,”
Ind. J. Sci. Technol.
,
9
(
47
), pp.
1
8
. 10.17485/ijst/2016/v9i47/107933
133.
Nanadic
,
N.
,
Ardis
,
P.
,
Hood
,
A.
,
Thurston
,
M.
,
Ghoshal
,
A.
, and
Lewicki
,
D.
,
2013
, “
Comparative Study of Vibration Condition Indicators for Detecting Cracks in Spur Gears
,” https://ntrs.nasa.gov/citations/20130014045
134.
Baqqar
,
M.
,
Wang
,
T.
,
Ahmed
,
M.
,
Gu
,
F.
,
Lu
,
J.
, and
Ball
,
A.
,
2012
, “
A General Regression Neural Network Model for Gearbox Fault Detection Using Motor Operating Parameters
,”
Proceedings of 2012 UKACC International Conference on Control
,
Cardiff, UK
,
Sept. 3–5
, pp.
584
588
.
135.
Wang
,
W.
, and
Wong
,
A. K.
,
2002
, “
Autoregressive Model-Based Gear Fault Diagnosis
,”
ASME J. Vib. Acoust.
,
124
(
2
), pp.
172
179
. 10.1115/1.1456905
136.
Assaad
,
B.
,
Eltabach
,
M.
, and
Antoni
,
J.
,
2014
, “
Vibration Based Condition Monitoring of a Multistage Epicyclic Gearbox in Lifting Cranes
,”
Mech. Syst. Signal Process.
,
42
(
1–2
), pp.
351
367
. 10.1016/j.ymssp.2013.06.032
137.
Peng
,
Y.
,
Zhang
,
X.
,
Song
,
Y.
, and
Liu
,
D.
,
2019
, “
A Low Cost Flexible Digital Twin Platform for Spacecraft Lithium-Ion Battery Pack Degradation Assessment
,”
Proceedings of 2019 IEEE International Instrumentation and Measurement Technology Conference (I2MTC)
,
Auckland, New Zealand
,
May 20–23
, pp.
1
6
.
138.
Wang
,
F.
,
Chen
,
X.
,
Dun
,
B.
,
Wang
,
B.
,
Yan
,
D.
, and
Zhu
,
H.
,
2017
, “
Rolling Bearing Reliability Assessment Via Kernel Principal Component Analysis and Weibull Proportional Hazard Model
,”
Shock Vib.
,
2017
, pp.
1
11
. 10.1155/2017/6184190
139.
Lin
,
D.
,
Wiseman
,
M.
,
Banjevic
,
D.
, and
Jardine
,
A. K.
,
2004
, “
An Approach to Signal Processing and Condition-Based Maintenance for Gearboxes Subject to Tooth Failure
,”
Mech. Syst. Signal Process.
,
18
(
5
), pp.
993
1007
. 10.1016/j.ymssp.2003.10.005
140.
Saad
,
A. A.
,
2010
, “
Predicting Remaining Lifetime of Transmission Gears
,”
SAE Technical Paper 2010-01-0903
. 10.4271/2010-01-0903
141.
Ognjanović
,
M.
,
Čamagić
,
I.
,
Jovanović
,
M.
,
Kalaba
,
D.
,
Tomić
,
R.
, and
Grgić
,
I.
,
2020
, “
Assessment of Probability of Gear Tooth Side Wear of a Planetary Gearbox
,”
Tehnički vjesnik
,
27
(
2
), pp.
506
512
. 10.17559/TV-20191004093047
142.
Sun
,
Y.
,
Ma
,
L.
,
Mathew
,
J.
,
Wang
,
W.
, and
Zhang
,
S.
,
2006
, “
Mechanical Systems Hazard Estimation Using Condition Monitoring
,”
Mech. Syst. Signal Process.
,
20
(
5
), pp.
1189
1201
. 10.1016/j.ymssp.2004.10.009
143.
Alom
,
M. Z.
,
Taha
,
T. M.
,
Yakopcic
,
C.
,
Westberg
,
S.
,
Sidike
,
P.
,
Nasrin
,
M. S.
,
Hasan
,
M.
,
Van Essen
,
B. C.
,
Awwal
,
A. A.
, and
Asari
,
V. K.
,
2019
, “
A State-of-the-Art Survey on Deep Learning Theory and Architectures
,”
Electronics
,
8
(
3
), p.
292
. 10.3390/electronics8030292
144.
Shrestha
,
A.
, and
Mahmood
,
A.
,
2019
, “
Review of Deep Learning Algorithms and Architectures
,”
IEEE Access
,
7
, pp.
53040
53065
. 10.1109/ACCESS.2019.2912200
145.
Tosyali
,
A.
,
Song
,
R.
,
Guo
,
W. G.
,
Abolhassani
,
A.
, and
Kalamdani
,
R.
,
2020
, “
Data-Driven Gantry Health Monitoring and Process Status Identification Based on Texture Extraction
,”
ASME J. Comput. Info. Sci. Eng.
,
21
(
1
), p.
011003
. 10.1115/1.4047559
146.
He
,
B.
,
Li
,
F.
,
Cao
,
X.
, and
Li
,
T.
,
2020
, “
Product Sustainable Design: A Review From the Environmental, Economic, and Social Aspects
,”
ASME J. Comput. Info. Sci. Eng.
,
20
(
4
), p.
040801
. 10.1115/1.4045408
147.
He
,
B.
,
Zhang
,
D.
,
Gu
,
Z.
,
Zhu
,
X.
, and
Cao
,
X.
,
2020
, “
Skeleton Model-Based Product Low Carbon Design Optimization
,”
J. Cleaner Prod.
,
264
, p.
121687
. 10.1016/j.jclepro.2020.121687
148.
He
,
B.
,
Cao
,
X.
, and
Gu
,
Z.
,
2020
, “
Kinematics of Underactuated Robotics for Product Carbon Footprint
,”
J. Cleaner Prod.
,
257
, p.
120491
. 10.1016/j.jclepro.2020.120491
149.
Ren
,
L.
,
Sun
,
Y.
,
Cui
,
J.
, and
Zhang
,
L.
,
2018
, “
Bearing Remaining Useful Life Prediction Based on Deep Autoencoder and Deep Neural Networks
,”
J. Manuf. Syst.
,
48
, pp.
71
77
. 10.1016/j.jmsy.2018.04.008
150.
Wang
,
X.
,
Zhao
,
Y.
, and
Pourpanah
,
F.
,
2020
, “
Recent Advances in Deep Learning
,”
Int. J. Mach. Learn. Cybernetics
,
11
(
4
), pp.
747
750
. 10.1007/s13042-020-01096-5
151.
Wang
,
Y.
,
Pan
,
Z.
,
Yuan
,
X.
,
Yang
,
C.
, and
Gui
,
W.
,
2020
, “
A Novel Deep Learning Based Fault Diagnosis Approach for Chemical Process With Extended Deep Belief Network
,”
ISA Trans.
,
96
, pp.
457
467
. 10.1016/j.isatra.2019.07.001
152.
Khan
,
A.
,
Sohail
,
A.
,
Zahoora
,
U.
, and
Qureshi
,
A. S.
,
2020
, “
A Survey of the Recent Architectures of Deep Convolutional Neural Networks
,”
Artif. Intell. Rev.
,
53
(
8
), pp.
5455
5516
. 10.1007/s10462-020-09825-6
153.
Hewamalage
,
H.
,
Bergmeir
,
C.
, and
Bandara
,
K.
,
2020
, “
Recurrent Neural Networks for Time Series Forecasting: Current Status and Future Directions
,”
Int. J. Forecast.
,
37
(
1
), pp.
388
427
. 10.1016/j.ijforecast.2020.06.008
154.
Hinton
,
G. E.
, and
Salakhutdinov
,
R. R.
,
2006
, “
Reducing the Dimensionality of Data With Neural Networks
,”
Science
,
313
(
5786
), pp.
504
507
. 10.1126/science.1127647
155.
Teng
,
W.
,
Cheng
,
H.
,
Ding
,
X.
,
Liu
,
Y.
,
Ma
,
Z.
, and
Mu
,
H.
,
2018
, “
DNN-Based Approach for Fault Detection in a Direct Drive Wind Turbine
,”
IET Renew. Power Gener.
,
12
(
10
), pp.
1164
1171
. 10.1049/iet-rpg.2017.0867
156.
Heydarzadeh
,
M.
,
Kia
,
S. H.
,
Nourani
,
M.
,
Henao
,
H.
, and
Capolino
,
G. A.
,
2016
, “
Gear Fault Diagnosis Using Discrete Wavelet Transform and Deep Neural Networks
,”
Proceedings of IECON 2016-42nd Annual Conference of the IEEE Industrial Electronics Society
,
Florence, Italy
,
Oct. 23–26
, pp.
1494
1500
.
157.
Cheng
,
G.
,
Chen
,
X.
,
Li
,
H.
,
Li
,
P.
, and
Liu
,
H.
,
2016
, “
Study on Planetary Gear Fault Diagnosis Based on Entropy Feature Fusion of Ensemble Empirical Mode Decomposition
,”
Measurement
,
91
, pp.
140
154
. 10.1016/j.measurement.2016.05.059
158.
Li
,
F.
,
Pang
,
X.
, and
Yang
,
Z.
,
2019
, “
Motor Current Signal Analysis Using Deep Neural Networks for Planetary Gear Fault Diagnosis
,”
Measurement
,
145
, pp.
45
54
. 10.1016/j.measurement.2019.05.074
159.
Qu
,
Y.
,
He
,
M.
,
Deutsch
,
J.
, and
He
,
D.
,
2017
, “
Detection of Pitting in Gears Using a Deep Sparse Autoencoder
,”
Appl. Sci.
,
7
(
5
), p.
515
. 10.3390/app7050515
160.
Wang
,
L.
,
Zhang
,
Z.
,
Long
,
H.
,
Xu
,
J.
, and
Liu
,
R.
,
2016
, “
Wind Turbine Gearbox Failure Identification With Deep Neural Networks
,”
IEEE Trans. Ind. Inf.
,
13
(
3
), pp.
1360
1368
. 10.1109/TII.2016.2607179
161.
Xia
,
M.
,
Li
,
T.
,
Liu
,
L.
,
Xu
,
L.
,
Gao
,
S.
, and
De Silva
,
C. W.
,
2017
, “
Remaining Useful Life Prediction of Rotating Machinery Using Hierarchical Deep Neural Network
,”
Proceedings of 2017 IEEE International Conference on Systems, Man, and Cybernetics (SMC)
,
Banff, AB, Canada
,
Oct. 5–8
, pp.
2778
2783
.
162.
Xu
,
Y.
,
Sun
,
Y.
,
Liu
,
X.
, and
Zheng
,
Y.
,
2019
, “
A Digital-Twin-Assisted Fault Diagnosis Using Deep Transfer Learning
,”
IEEE Access
,
7
, pp.
19990
19999
. 10.1109/ACCESS.2018.2890566
163.
Al-Dulaimi
,
A.
,
Zabihi
,
S.
,
Asif
,
A.
, and
Mohammadi
,
A.
,
2019
, “
Hybrid Deep Neural Network Model for Remaining Useful Life Estimation
,”
ICASSP 2019–2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
,
Brighton, UK
,
May 12–17
, pp.
3872
3876
.
164.
Nabian
,
M. A.
, and
Meidani
,
H.
,
2020
, “
Physics-Driven Regularization of Deep Neural Networks for Enhanced Engineering Design and Analysis
,”
ASME J. Comput. Inf. Sci. Eng.
,
20
(
1
), p.
011006
. 10.1115/1.4044507
165.
Qiao
,
J.
,
Liu
,
X.
, and
Chen
,
Z.
,
2020
, “
Prediction of the Remaining Useful Life of Lithium-Ion Batteries Based on Empirical Mode Decomposition and Deep Neural Networks
,”
IEEE Access
,
8
, pp.
42760
42767
. 10.1109/ACCESS.2020.2977429
166.
Hanggara
,
F. S.
, and
Anam
,
K.
,
2020
, “
Sequence-Based Protein-Protein Interaction Prediction Using Greedy Layer-Wise Training of Deep Neural Networks
,”
AIP Conf. Proc.
,
2278
(
1
), p.
020050
. 10.1063/5.0014721
167.
Wang
,
Y.
,
Zhao
,
Y.
, and
Addepalli
,
S.
,
2020
, “
Remaining Useful Life Prediction Using Deep Learning Approaches: A Review
,”
Procedia Manuf.
,
49
, pp.
81
88
. 10.1016/j.promfg.2020.06.015
168.
Pan
,
Y.
,
Hong
,
R.
,
Chen
,
J.
, and
Wu
,
W.
,
2020
, “
A Hybrid DBN-SOM-Pf-Based Prognostic Approach of Remaining Useful Life for Wind Turbine Gearbox
,”
Renewable Energy
,
152
, pp.
138
154
. 10.1016/j.renene.2020.01.042
169.
Deutsch
,
J.
, and
He
,
D.
,
2017
, “
Using Deep Learning-Based Approach to Predict Remaining Useful Life of Rotating Components
,”
IEEE Trans. Syst. Man Cybernetics Syst.
,
48
(
1
), pp.
11
20
. 10.1109/TSMC.2017.2697842
170.
Jiao
,
R.
,
Peng
,
K.
,
Dong
,
J.
, and
Zhang
,
C.
,
2020
, “
Fault Monitoring and Remaining Useful Life Prediction Framework for Multiple Fault Modes in Prognostics
,”
Reliab. Eng. Syst. Saf.
,
203
, p.
107028
. 10.1016/j.ress.2020.107028
171.
Zhao
,
G.
,
Liu
,
X.
,
Zhang
,
B.
,
Zhang
,
G.
,
Niu
,
G.
, and
Hu
,
C.
,
2017
, “
Bearing Health Condition Prediction Using Deep Belief Network
,”
Proceedings of the Annual Conference of Prognostics and Health Management Society
,
Orlando, FL
, pp.
2
5
.
172.
Deutsch
,
J.
,
He
,
M.
, and
He
,
D.
,
2017
, “
Remaining Useful Life Prediction of Hybrid Ceramic Bearings Using an Integrated Deep Learning and Particle Filter Approach
,”
Appl. Sci.
,
7
(
7
), p.
649
. 10.3390/app7070649
173.
Li
,
J. F.
,
Chen
,
Y. X.
,
Xing
,
C. H.
, and
Cai
,
Z. Y.
,
2020
, “
Remaining Useful Life Prediction for Aircraft Engine Based on Lstm-Dbn
,”
Syst. Eng. Electron.
,
42
(
7
), pp.
1637
1644
. 10.1016/j.ress.2017.02.007
174.
Ma
,
M.
,
Sun
,
C.
, and
Chen
,
X.
,
2017
, “
Discriminative Deep Belief Networks With Ant Colony Optimization for Health Status Assessment of Machine
,”
IEEE Trans. Instrum. Meas.
,
66
(
12
), pp.
3115
3125
. 10.1109/TIM.2017.2735661
175.
Zhou
,
D. X.
,
2020
, “
Universality of Deep Convolutional Neural Networks
,”
Appl. Comput. Harmon. Anal.
,
48
(
2
), pp.
787
794
. 10.1016/j.acha.2019.06.004
176.
Lo
,
C. C.
,
Lee
,
C. H.
, and
Huang
,
W. C.
,
2020
, “
Prognosis of Bearing and Gear Wears Using Convolutional Neural Network With Hybrid Loss Function
,”
Sensors
,
20
(
12
), p.
3539
. 10.3390/s20123539
177.
Yang
,
B.
,
Liu
,
R.
, and
Zio
,
E.
,
2019
, “
Remaining Useful Life Prediction Based on a Double-Convolutional Neural Network Architecture
,”
IEEE Trans. Ind. Electron.
,
66
(
12
), pp.
9521
9530
. 10.1109/TIE.2019.2924605
178.
Wen
,
L.
,
Dong
,
Y.
, and
Gao
,
L.
,
2019
, “
A New Ensemble Residual Convolutional Neural Network for Remaining Useful Life Estimation
,”
Math. Biosci. Eng
,
16
(
2
), pp.
862
880
. 10.3934/mbe.2019040
179.
Li
,
J.
,
Li
,
X.
, and
He
,
D.
,
2019
, “
A Directed Acyclic Graph Network Combined With CNN and Lstm for Remaining Useful Life Prediction
,”
IEEE Access
,
7
, pp.
75464
75475
. 10.1109/ACCESS.2019.2919566
180.
Ma
,
M.
, and
Mao
,
Z.
,
2020
, “
Deep Convolution-Based Lstm Network for Remaining Useful Life Prediction
,”
IEEE Trans. Ind. Inf.
,
17
(
3
), pp.
1
. 10.1109/TII.2020.2991796
181.
Remadna
,
I.
,
Terrissa
,
S. L.
,
Zemouri
,
R.
,
Ayad
,
S.
, and
Zerhouni
,
N.
,
2020
, “
Leveraging the Power of the Combination of CNN and Bi-directional Lstm Networks for Aircraft Engine RUL Estimation
,”
Proceedings of 2020 Prognostics and Health Management Conference (PHM-Besançon)
, pp.
116
121
.
182.
Al-Dulaimi
,
A.
,
Zabihi
,
S.
,
Asif
,
A.
, and
Mohammed
,
A.
,
2020
, “
Nblstm: Noisy and Hybrid Convolutional Neural Network and Blstm-Based Deep Architecture for Remaining Useful Life Estimation
,”
ASME J. Comput. Inf. Sci. Eng.
,
20
(
2
), p.
021012
. 10.1115/1.4045491
183.
Cheng
,
C.
,
Ma
,
G.
,
Zhang
,
Y.
,
Sun
,
M.
,
Teng
,
F.
,
Ding
,
H.
, and
Yuan
,
Y.
,
2020
, “
A Deep Learning-Based Remaining Useful Life Prediction Approach for Bearings
,”
IEEE/ASME Trans. Mechatron.
,
25
(
3
), pp.
1243
1254
. 10.1109/TMECH.2020.2971503
184.
Xu
,
X.
,
Wu
,
Q.
,
Li
,
X.
, and
Huang
,
B.
,
2020
, “
Dilated Convolution Neural Network for Remaining Useful Life Prediction
,”
ASME J. Comput. Inf. Sci. Eng.
,
20
(
2
), p.
021004
. 10.1115/1.4045293
185.
Hammou
,
B. A.
,
Lahcen
,
A. A.
, and
Mouline
,
S.
,
2020
, “
Towards a Real-Time Processing Framework Based on Improved Distributed Recurrent Neural Network Variants With Fasttext for Social Big Data Analytics
,”
Inf. Process. Manage.
,
57
(
1
), p.
102122
. 10.1016/j.ipm.2019.102122
186.
Yu
,
W.
,
Kim
,
I. Y.
, and
Mechefske
,
C.
,
2019
, “
Remaining Useful Life Estimation Using a Bidirectional Recurrent Neural Network Based Autoencoder Scheme
,”
Mech. Syst. Signal Process.
,
129
, pp.
764
780
. 10.1016/j.ymssp.2019.05.005
187.
Xiang
,
S.
,
Qin
,
Y.
,
Zhu
,
C.
,
Wang
,
Y.
, and
Chen
,
H.
,
2020
, “
Lstm Networks Based on Attention Ordered Neurons for Gear Remaining Life Prediction
,”
ISA Trans.
,
106
, pp.
343
354
. 10.1016/j.isatra.2020.06.023
188.
Yan
,
H.
,
Qin
,
Y.
,
Xiang
,
S.
,
Wang
,
Y.
, and
Chen
,
H.
,
2020
, “
Long-Term Gear Life Prediction Based on Ordered Neurons Lstm Neural Networks
,”
Measurement
,
165
, p.
108205
. 10.1016/j.measurement.2020.108205
189.
Qin
,
Y.
,
Xiang
,
S.
,
Chai
,
Y.
, and
Chen
,
H.
,
2019
, “
Macroscopic-Microscopic Attention in Lstm Networks Based on Fusion Features for Gear Remaining Life Prediction
,”
IEEE Trans. Ind. Electron.
,
67
(
12
), pp.
10865
10875
. 10.1109/TIE.2019.2959492
190.
Xiang
,
S.
,
Qin
,
Y.
,
Zhu
,
C.
,
Wang
,
Y.
, and
Chen
,
H.
,
2020
, “
Long Short-Term Memory Neural Network With Weight Amplification and Its Application Into Gear Remaining Useful Life Prediction
,”
Eng. Appl. Artif. Intell.
,
91
, p.
103587
. 10.1016/j.engappai.2020.103587
191.
Yu
,
W.
,
Kim
,
I. Y.
, and
Mechefske
,
C.
,
2020
, “
An Improved Similarity-Based Prognostic Algorithm for RUL Estimation Using a RNN Autoencoder Scheme
,”
Reliab. Eng. Syst. Saf.
,
199
, p.
106926
. 10.1016/j.ress.2020.106926
192.
Zhang
,
A.
,
Wang
,
H.
,
Li
,
S.
,
Cui
,
Y.
,
Liu
,
Z.
,
Yang
,
G.
, and
Hu
,
J.
,
2018
, “
Transfer Learning With Deep Recurrent Neural Networks for Remaining Useful Life Estimation
,”
Appl. Sci.
,
8
(
12
), p.
2416
. 10.3390/app8122416
193.
Heimes
,
F. O.
,
2008
, “
Recurrent Neural Networks for Remaining Useful Life Estimation
,”
Proceedings of 2008 International Conference on Prognostics and Health Management
,
Denver, CO
,
Oct. 6–9
, pp.
1
6
.
194.
Peng
,
Y.
,
Wang
,
H.
,
Wang
,
J.
,
Liu
,
D.
, and
Peng
,
X.
,
2012
, “
A Modified Echo State Network Based Remaining Useful Life Estimation Approach
,”
Proceedings of 2012 IEEE Conference on Prognostics and Health Management
,
Denver, CO
,
June 18–21
, pp.
1
7
.
195.
Zhang
,
H.
,
Zhang
,
Q.
,
Shao
,
S.
,
Niu
,
T.
, and
Yang
,
X.
,
2020
, “
Attention-Based Lstm Network for Rotatory Machine Remaining Useful Life Prediction
,”
IEEE Access
,
8
, pp.
132188
132199
. 10.1109/ACCESS.2020.3010066
196.
de Miranda
,
A. R.
,
de Andrade Barbosa
,
T. M.
,
Conceição
,
A. G. S.
, and
Alcalá
,
S. G. S.
,
2019
, “
Recurrent Neural Network Based on Statistical Recurrent Unit for Remaining Useful Life Estimation
,”
Proceedings of 8th Brazilian Conference on Intelligent Systems (BRACIS)
,
Salvador, Brazil
,
Oct. 15–18
, pp.
425
430
.
197.
Su
,
Y.
,
Tao
,
F.
,
Jin
,
J.
,
Wang
,
T.
,
Wang
,
Q.
, and
Wang
,
L.
,
2020
, “
Failure Prognosis of Complex Equipment With Multistream Deep Recurrent Neural Network
,”
ASME J. Comput. Inf. Sci. Eng.
,
20
(
2
), p.
021007
. 10.1115/1.4045445
198.
Chadha
,
G. S.
,
Panambilly
,
A.
,
Schwung
,
A.
, and
Ding
,
S. X.
,
2020
, “
Bidirectional Deep Recurrent Neural Networks for Process Fault Classification
,”
ISA Trans.
,
106
. 10.1016/j.isatra.2020.07.011
199.
Huang
,
Z.
,
Xu
,
Z.
,
Ke
,
X.
,
Wang
,
W.
, and
Sun
,
Y.
,
2017
, “
Remaining Useful Life Prediction for an Adaptive Skew-Wiener Process Model
,”
Mech. Syst. Signal Proces.
,
87
, pp.
294
306
. 10.1016/j.ymssp.2016.10.027
200.
Li
,
N.
,
Lei
,
Y.
,
Yan
,
T.
,
Li
,
N.
, and
Han
,
T.
,
2018
, “
A Wiener-Process-Model-Based Method for Remaining Useful Life Prediction Considering Unit-to-Unit Variability
,”
IEEE Trans. Ind. Electron.
,
66
(
3
), pp.
2092
2101
. 10.1109/TIE.2018.2838078
201.
Wang
,
H.
,
Ma
,
X.
, and
Zhao
,
Y.
,
2019
, “
An Improved Wiener Process Model With Adaptive Drift and Diffusion for Online Remaining Useful Life Prediction
,”
Mech. Syst. Signal Process.
,
127
, pp.
370
387
. 10.1016/j.ymssp.2019.03.019
202.
Li
,
T.
,
Pei
,
H.
,
Pang
,
Z.
,
Si
,
X.
, and
Zheng
,
J.
,
2019
, “
A Sequential Bayesian Updated Wiener Process Model for Remaining Useful Life Prediction
,”
IEEE Access
,
8
, pp.
5471
5480
. 10.1109/ACCESS.2019.2962502
203.
Liu
,
D.
, and
Wang
,
S.
,
2020
, “
A Degradation Modeling and Reliability Estimation Method Based on Wiener Process and Evidential Variable
,”
Reliab. Eng. Syst. Saf.
,
202
, p.
106957
. 10.1016/j.ress.2020.106957
204.
Limon
,
S.
, and
Yadav
,
O. P.
,
2019
, “
Predicting Remaining Lifetime Using the Monotonic Gamma Process and Bayesian Inference for Multi-stress Conditions
,”
Procedia Manuf.
,
38
, pp.
1260
1267
. 10.1016/j.promfg.2020.01.218
205.
Pan
,
D.
,
Liu
,
J. B.
, and
Cao
,
J.
,
2016
, “
Remaining Useful Life Estimation Using an Inverse Gaussian Degradation Model
,”
Neurocomputing
,
185
, pp.
64
72
. 10.1016/j.neucom.2015.12.041
206.
Prakash
,
G.
, and
Narasimhan
,
S.
,
2018
, “
Bayesian Two-Phase Gamma Process Model for Damage Detection and Prognosis
,”
J. Eng. Mech.
,
144
(
2
), p.
04017158
. 10.1061/(ASCE)EM.1943-7889.0001386
207.
Ni
,
X.
,
Zhao
,
J.
,
Chen
,
J.
, and
Li
,
H.
,
2015
, “
Planetary Gearbox Remaining Useful Life Estimation Based on State Space Model
,”
VibroEng. Procedia
,
5
, pp.
253
258
.
208.
Xu
,
W.
, and
Wang
,
W.
,
2012
, “
An Adaptive Gamma Process Based Model for Residual Useful Life Prediction
,”
Proceedings of the IEEE 2012 Prognostics and System Health Management Conference (PHM-2012 Beijing)
,
Beijing, China
,
May 23–25
, pp.
1
4
.
209.
Cui
,
L.
,
Wang
,
X.
,
Wang
,
H.
, and
Ma
,
J.
,
2019
, “
Research on Remaining Useful Life Prediction of Rolling Element Bearings Based on Time-Varying Kalman Filter
,”
IEEE Trans. Instrum. Measurement
,
69
(
6
), pp.
2858
2867
. 10.1109/TIM.2019.2924509
210.
Le Son
,
K.
,
Fouladirad
,
M.
, and
Barros
,
A.
,
2016
, “
Remaining Useful Lifetime Estimation and Noisy Gamma Deterioration Process
,”
Reliab. Eng. Syst. Saf.
,
149
, pp.
76
87
. 10.1016/j.ress.2015.12.016
211.
Lin
,
Y. C.
, and
Chung
,
K. J.
,
2019
, “
Lifetime Prognosis of Lithium-Ion Batteries Through Novel Accelerated Degradation Measurements and a Combined Gamma Process and Monte Carlo Method
,”
Applied Sci.
,
9
(
3
), p.
559
. 10.3390/app9030559
212.
Tao
,
Z.
,
An
,
Q.
,
Liu
,
G.
, and
Chen
,
M.
,
2019
, “
A Novel Method for Tool Condition Monitoring Based on Long Short-Term Memory and Hidden Markov Model Hybrid Framework in High-Speed Milling Ti-6al-4v
,”
Int. J. Adv. Manuf. Technol.
,
105
(
7–8
), pp.
3165
3182
. 10.1007/s00170-019-04464-w
213.
Li
,
W.
, and
Liu
,
T.
,
2019
, “
Time Varying and Condition Adaptive Hidden Markov Model for Tool Wear State Estimation and Remaining Useful Life Prediction in Micro-milling
,”
Mech. Syst. Signal Process.
,
131
, pp.
689
702
. 10.1016/j.ymssp.2019.06.021
214.
Hu
,
Y. W.
,
Zhang
,
H. C.
,
Liu
,
S. J.
, and
Lu
,
H. T.
,
2018
, “
Sequential Monte Carlo Method Toward Online Rul Assessment With Applications
,”
Chin. J. Mech. Eng.
,
31
(
1
), pp.
1
12
. 10.1186/s10033-018-0219-4
215.
Liu
,
Q.
,
Dong
,
M.
, and
Peng
,
Y.
,
2012
, “
A Novel Method for Online Health Prognosis of Equipment Based on Hidden Semi-Markov Model Using Sequential Monte Carlo Methods
,”
Mech. Syst. Signal Process.
,
32
, pp.
331
348
. 10.1016/j.ymssp.2012.05.004
216.
Xiao
,
Q.
,
Fang
,
Y.
,
Liu
,
Q.
, and
Zhou
,
S.
,
2018
, “
Online Machine Health Prognostics Based on Modified Duration-Dependent Hidden Semi-Markov Model and High-Order Particle Filtering
,”
Int. J. Adv. Manuf. Technol.
,
94
(
1–4
), pp.
1283
1297
. 10.1007/s00170-017-0916-7
217.
Dong
,
M.
, and
He
,
D.
,
2007
, “
A Segmental Hidden Semi-Markov Model (HSMM)-Based Diagnostics and Prognostics Framework and Methodology
,”
Mech. Syst. Signal Process.
,
21
(
5
), pp.
2248
2266
. 10.1016/j.ymssp.2006.10.001
218.
Giantomassi
,
A.
,
Ferracuti
,
F.
,
Benini
,
A.
,
Ippoliti
,
G.
,
Longhi
,
S.
, and
Petrucci
,
A.
,
2011
, “
Hidden Markov Model for Health Estimation and Prognosis of Turbofan Engines
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Washington, DC
,
Aug. 28–31
, pp.
681
689
.
219.
Kundu
,
P.
,
Darpe
,
A. K.
, and
Kulkarni
,
M. S.
,
2019
, “
Weibull Accelerated Failure Time Regression Model for Remaining Useful Life Prediction of Bearing Working Under Multiple Operating Conditions
,”
Mech. Syst. Signal Process.
,
134
, p.
106302
. 10.1016/j.ymssp.2019.106302
220.
Liao
,
H.
,
Zhao
,
W.
, and
Guo
,
H.
,
2006
, “
Predicting Remaining Useful Life of an Individual Unit Using Proportional Hazards Model and Logistic Regression Model
,”
RAMS'06. Annual Reliability and Maintainability Symposium, 2006
,
Newport Beach, CA
,
Jan. 23–26
, pp
127
132
.
221.
Benkedjouh
,
T.
,
Medjaher
,
K.
,
Zerhouni
,
N.
, and
Rechak
,
S.
,
2013
, “
Remaining Useful Life Estimation Based on Nonlinear Feature Reduction and Support Vector Regression
,”
Eng. Appl. Artif. Intell.
,
26
(
7
), pp.
1751
1760
. 10.1016/j.engappai.2013.02.006
222.
Khelif
,
R.
,
Chebel-Morello
,
B.
,
Malinowski
,
S.
,
Laajili
,
E.
,
Fnaiech
,
F.
, and
Zerhouni
,
N.
,
2016
, “
Direct Remaining Useful Life Estimation Based on Support Vector Regression
,”
IEEE Trans. Ind. Electron.
,
64
(
3
), pp.
2276
2285
. 10.1109/TIE.2016.2623260
223.
Rai
,
A.
, and
Upadhyay
,
S. H.
,
2018
, “
Intelligent Bearing Performance Degradation Assessment and Remaining Useful Life Prediction Based on Self-organising Map and Support Vector Regression
,”
Proc. Inst. Mech. Eng., Part C
,
232
(
6
), pp.
1118
1132
. 10.1177/0954406217700180
224.
Aye
,
S.
, and
Heyns
,
P.
,
2017
, “
An Integrated Gaussian Process Regression for Prediction of Remaining Useful Life of Slow Speed Bearings Based on Acoustic Emission
,”
Mech. Syst. Signal Process.
,
84
, pp.
485
498
. 10.1016/j.ymssp.2016.07.039
225.
Aye
,
S. A.
, and
Heyns
,
P. S.
,
2018
, “
Prognostics of Slow Speed Bearings Using a Composite Integrated Gaussian Process Regression Model
,”
Int. J. Prod. Res.
,
56
(
14
), pp.
4860
4873
. 10.1080/00207543.2018.1470340
226.
Hong
,
S.
, and
Zhou
,
Z.
,
2012
, “
Remaining Useful Life Prognosis of Bearing Based on Gauss Process Regression
,”
Proceedings of 5th International Conference on BioMedical Engineering and Informatics
,
Chongqing, China
,
Oct. 16–18
, pp.
1575
1579
.
227.
Du
,
Y.
,
Wu
,
T.
,
Zhou
,
S.
, and
Makis
,
V.
,
2020
, “
Remaining Useful Life Prediction of Lubricating Oil With Dynamic Principal Component Analysis and Proportional Hazards Model
,”
Proc. Inst. Mech. Eng., Part J
,
234
(
6
), pp.
964
971
. 10.1177/1350650119874560
228.
Tayade
,
A.
,
Patil
,
S.
,
Phalle
,
V.
,
Kazi
,
F.
, and
Powar
,
S.
,
2019
, “
Remaining Useful Life (RUL) Prediction of Bearing by Using Regression Model and Principal Component Analysis (PCA) Technique
,”
VibroEng. Procedia
,
23
, pp.
30
36
. 10.21595/vp.2019.20617
229.
Xia
,
M.
,
Li
,
T.
,
Shu
,
T.
,
Wan
,
J.
,
De Silva
,
C. W.
, and
Wang
,
Z.
,
2018
, “
A Two-Stage Approach for the Remaining Useful Life Prediction of Bearings Using Deep Neural Networks
,”
IEEE Trans. Ind. Inf.
,
15
(
6
), pp.
3703
3711
. 10.1109/TII.2018.2868687
230.
Zhao
,
Z.
,
Liang
,
B.
,
Wang
,
X.
, and
Lu
,
W.
,
2017
, “
Remaining Useful Life Prediction of Aircraft Engine Based on Degradation Pattern Learning
,”
Reliab. Eng. Syst. Saf.
,
164
, pp.
74
83
. 10.1016/j.ress.2017.02.007
231.
Yang
,
H.
,
Zhao
,
F.
,
Jiang
,
G.
,
Sun
,
Z.
, and
Mei
,
X.
,
2019
, “
A Novel Deep Learning Approach for Machinery Prognostics Based on Time Windows
,”
Appl. Sci.
,
9
(
22
), p.
4813
. 10.3390/app9224813
232.
Zhang
,
X.
,
Xiao
,
P.
,
Yang
,
Y.
,
Cheng
,
Y.
,
Chen
,
B.
,
Gao
,
D.
,
Liu
,
W.
, and
Huang
,
Z.
,
2019
, “
Remaining Useful Life Estimation Using CNN-XGB With Extended Time Window
,”
IEEE Access
,
7
, pp.
154386
154397
. 10.1109/ACCESS.2019.2942991
233.
Niu
,
J.
,
Liu
,
C.
,
Zhang
,
L.
, and
Liao
,
Y.
,
2019
, “
Remaining Useful Life Prediction of Machining Tools by 1d-CNN Lstm Network
,”
Proceedings of IEEE Symposium Series on Computational Intelligence (SSCI)
,
Xiamen, China
,
Dec. 6–9
, pp.
1056
1063
.
234.
Xia
,
T.
,
Song
,
Y.
,
Zheng
,
Y.
,
Pan
,
E.
, and
Xi
,
L.
,
2020
, “
An Ensemble Framework Based on Convolutional Bi-directional Lstm With Multiple Time Windows for Remaining Useful Life Estimation
,”
Comput. Ind.
,
115
, p.
103182
. 10.1016/j.compind.2019.103182
235.
Li
,
C.
,
Mahadevan
,
S.
,
Ling
,
Y.
,
Choze
,
S.
, and
Wang
,
L.
,
2017
, “
Dynamic Bayesian Network for Aircraft Wing Health Monitoring Digital Twin
,”
AIAA J.
,
55
(
3
), pp.
930
941
. 10.2514/1.J055201
236.
Yu
,
J.
,
Song
,
Y.
,
Tang
,
D.
, and
Dai
,
J.
,
2020
, “
A Digital Twin Approach Based on Nonparametric Bayesian Network for Complex System Health Monitoring
,”
J. Manuf. Syst.
, in press. 10.1016/j.jmsy.2020.07.005
237.
Gugulothu
,
N.
,
Tv
,
V.
,
Malhotra
,
P.
,
Vig
,
L.
,
Agarwal
,
P.
, and
Shroff
,
G.
,
2017
, “
Predicting Remaining Useful Life Using Time Series Embeddings Based on Recurrent Neural Networks
,”
ArXiv preprint
. arXiv:1709.01073
238.
He
,
B.
, and
Bai
,
K. J.
,
2020
, “
Digital Twin-Based Sustainable Intelligent Manufacturing: A Review
,”
Adv. Manuf.
,
8
(
2
), pp.
1
21
. 10.1007/s40436-020-00302-5
239.
Liu
,
Z.
,
Chen
,
W.
,
Zhang
,
C.
,
Yang
,
C.
, and
Chu
,
H.
,
2019
, “
Data Super-Network Fault Prediction Model and Maintenance Strategy for Mechanical Product Based on Digital Twin
,”
IEEE Access
,
7
, pp.
177284
177296
. 10.1109/ACCESS.2019.2957202
240.
Shi
,
J.
,
Yu
,
T.
,
Goebel
,
K.
, and
Wu
,
D.
,
2021
, “
Remaining Useful Life Prediction of Bearings Using Ensemble Learning: The Impact of Diversity in Base Learners and Features
,”
ASME J. Comput. Inf. Sci. Eng.
,
21
(
2
), p.
021004
. 10.1115/1.4048966
241.
Werner
,
A.
,
Zimmermann
,
N.
, and
Lentes
,
J.
,
2019
, “
Approach for a Holistic Predictive Maintenance Strategy by Incorporating a Digital Twin
,”
Procedia Manuf.
,
39
, pp.
1743
1751
. 10.1016/j.promfg.2020.01.265
You do not currently have access to this content.