Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Additive manufacturing (AM) fabricates three-dimensional parts via layer-by-layer deposition and solidification of materials. Due to the complexity of this process, advanced sensing is increasingly employed to facilitate system visibility, leading to a large amount of high-dimensional and complex-structured data. While deep learning brings attractive characteristics for data-driven process monitoring and quality prediction, it is currently limited in the ability to assimilate engineering knowledge and offer model interpretability for understanding process–quality relationships. In addition, due to spatiotemporal correlations in AM, a melt-pool anomaly observed during fabrication is not always indicative of abnormal quality characteristics. There is a pressing need to go beyond pointwise analysis of melt pools and consider spatiotemporal effects for quality analysis. In this paper, we propose a novel feature learning framework guided by engineering knowledge for AM quality monitoring. First, engineering knowledge is integrated with deep learning to delineate various sources of process variations and extract melt-pool features that reflect quality-related relationships. Second, a 3D neighborhood model is designed to characterize spatiotemporal variations of melt pools based on their domain-informed features. The resulting 3D neighborhood profiles enable us to go beyond pointwise analysis of melt pools for capturing process–quality relationships. Finally, we built a regression model to predict internal density variations using 3D neighborhood profiles. Our experiments demonstrate that the proposed framework significantly outperforms traditional hand-crafted method and black-box learning in both the ability to provide quality-related features and predict internal density variations.

References

1.
Yang
,
H.
,
Kumara
,
S.
,
Bukkapatnam
,
S. T.
, and
Tsung
,
F.
,
2019
, “
The Internet of Things for Smart Manufacturing: A Review
,”
IISE Trans.
,
51
(
11
), pp.
1190
1216
.
2.
Lane
,
B.
, and
Yeung
,
H.
,
2020
, “
Process Monitoring Dataset From the Additive Manufacturing Metrology Testbed (AMMT): Overhang Part X4
,”
J. Res. Natl. Inst. Stand. Technol.
,
125
, pp.
1
18
.
3.
Yao
,
B.
, and
Yang
,
H.
,
2018
, “
Constrained Markov Decision Process Modeling for Sequential Optimization of Additive Manufacturing Build Quality
,”
IEEE Access
,
6
, pp.
54786
54794
.
4.
Praniewicz
,
M.
,
Lane
,
B.
,
Kim
,
F.
, and
Saldana
,
C.
,
2020
, “
X-ray Computed Tomography Data of Additive Manufacturing Metrology Testbed (AMMT) Parts: “Overhang Part X4
,”
J. Res. Natl. Inst. Stand. Technol.
,
125
, pp.
1
9
.
5.
Yang
,
H.
,
Rao
,
P.
,
Simpson
,
T.
,
Lu
,
Y.
,
Witherell
,
P.
,
Nassar
,
A. R.
,
Reutzel
,
E.
, and
Kumara
,
S.
,
2020
, “
Six-Sigma Quality Management of Additive Manufacturing
,”
Proc. IEEE
,
109
(
4
), pp.
347
376
.
6.
Yazdi
,
R. M.
,
Imani
,
F.
, and
Yang
,
H.
,
2020
, “
A Hybrid Deep Learning Model of Process-Build Interactions in Additive Manufacturing
,”
J. Manuf. Syst.
,
57
, pp.
460
468
.
7.
Imani
,
F.
,
Chen
,
R.
,
Diewald
,
E.
,
Reutzel
,
E.
, and
Yang
,
H.
,
2019
, “
Deep Learning of Variant Geometry in Layerwise Imaging Profiles for Additive Manufacturing Quality Control
,”
ASME J. Manuf. Sci. Eng.
,
141
(
11
), p.
111001
.
8.
Yin
,
J.
,
Wang
,
D.
,
Yang
,
L.
,
Wei
,
H.
,
Dong
,
P.
,
Ke
,
L.
,
Wang
,
G.
,
Zhu
,
H.
, and
Zeng
,
X.
,
2020
, “
Correlation Between Forming Quality and Spatter Dynamics in Laser Powder Bed Fusion
,”
Addit. Manuf.
,
31
, p.
100958
.
9.
Snow
,
Z.
,
Scime
,
L.
,
Ziabari
,
A.
,
Fisher
,
B.
, and
Paquit
,
V.
,
2023
, “
Observation of Spatter-Induced Stochastic Lack-of-Fusion in Laser Powder Bed Fusion Using In Situ Process Monitoring
,”
Addit. Manuf.
,
61
, p.
103298
.
10.
Chen
,
Y.
, and
Yang
,
H.
,
2015
, “
Sparse Modeling and Recursive Prediction of Space–Time Dynamics in Stochastic Sensor Networks
,”
IEEE Trans. Autom. Sci. Eng.
,
13
(
1
), pp.
215
226
.
11.
Yao
,
B.
,
Imani
,
F.
,
Sakpal
,
A. S.
,
Reutzel
,
E. W.
, and
Yang
,
H.
,
2018
, “
Multifractal Analysis of Image Profiles for the Characterization and Detection of Defects in Additive Manufacturing
,”
ASME J. Manuf. Sci. Eng.
,
140
(
3
), p.
031014
.
12.
Imani
,
F.
,
Yao
,
B.
,
Chen
,
R.
,
Rao
,
P.
, and
Yang
,
H.
,
2019
, “
Joint Multifractal and Lacunarity Analysis of Image Profiles for Manufacturing Quality Control
,”
ASME J. Manuf. Sci. Eng.
,
141
(
4
), p.
044501
.
13.
Liu
,
R.
,
Vogt
,
B. D.
, and
Yang
,
H.
,
2021
, “
Gaussian Process Monitoring of Layerwise-Dependent Imaging Data
,”
IEEE Rob. Autom. Lett.
,
6
(
4
), pp.
8029
8036
.
14.
Liu
,
R.
, and
Yang
,
H.
,
2023
, “
Multimodal Probabilistic Modeling of Melt Pool Geometry Variations in Additive Manufacturing
,”
Addit. Manuf.
,
61
, p.
103375
.
15.
Yang
,
H.
,
Reijonen
,
J.
, and
Revuelta
,
A.
,
2023
, “
Multiresolution Quality Inspection of Layerwise Builds for Metal 3D Printer and Scanner
,”
ASME J. Manuf. Sci. Eng.
,
145
(
10
), p.
101004
.
16.
Lu
,
Q.
,
Grasso
,
M.
,
Le
,
T.-P.
, and
Seita
,
M.
,
2022
, “
Predicting Build Density in L-PBF Through In-Situ Analysis of Surface Topography Using Powder Bed Scanner Technology
,”
Addit. Manuf.
,
51
, p.
102626
.
17.
Caggiano
,
A.
,
Zhang
,
J.
,
Alfieri
,
V.
,
Caiazzo
,
F.
,
Gao
,
R.
, and
Teti
,
R.
,
2019
, “
Machine Learning-Based Image Processing for On-Line Defect Recognition in Additive Manufacturing
,”
CIRP Ann.
,
68
(
1
), pp.
451
454
.
18.
Khanzadeh
,
M.
,
Chowdhury
,
S.
,
Marufuzzaman
,
M.
,
Tschopp
,
M. A.
, and
Bian
,
L.
,
2018
, “
Porosity Prediction: Supervised-Learning of Thermal History for Direct Laser Deposition
,”
J. Manuf. Syst.
,
47
, pp.
69
82
.
19.
Scime
,
L.
, and
Beuth
,
J.
,
2019
, “
Using Machine Learning to Identify In-Situ Melt Pool Signatures Indicative of Flaw Formation in a Laser Powder Bed Fusion Additive Manufacturing Process
,”
Addit. Manuf.
,
25
, pp.
151
165
.
20.
Zhang
,
S.
,
Lu
,
Y.
, and
Yang
,
H.
,
2024
, “
Multiscale Basis Modeling of 3D Melt-Pool Morphological Variations for Manufacturing Process Monitoring
,”
Int. J. Adv. Manuf. Technol.
, pp.
1
12
.
21.
Yang
,
H.
,
Zhang
,
S.
,
Lu
,
Y.
,
Witherell
,
P.
, and
Kumara
,
S.
,
2022
, “
Spatiotemporal Monitoring of Melt-Pool Variations in Metal-Based Additive Manufacturing
,”
IEEE Rob. Autom. Lett.
,
7
(
3
), pp.
8249
8256
.
22.
Guo
,
S.
,
Guo
,
W. G.
, and
Bain
,
L.
,
2020
, “
Hierarchical Spatial-Temporal Modeling and Monitoring of Melt Pool Evolution in Laser-Based Additive Manufacturing
,”
IISE Trans.
,
52
(
9
), pp.
977
997
.
23.
Yang
,
Z.
,
Lu
,
Y.
,
Yeung
,
H.
, and
Krishnamurty
,
S.
,
2019
, “
Investigation of Deep Learning for Real-Time Melt Pool Classification in Additive Manufacturing
,”
2019 IEEE 15th International Conference on Automation Science and Engineering (CASE)
,
Vancouver, BC, Canada
,
Aug. 22–26
, IEEE, pp.
640
647
.
24.
Kwon
,
O.
,
Kim
,
H. G.
,
Ham
,
M. J.
,
Kim
,
W.
,
Kim
,
G.-H.
,
Cho
,
J.-H.
,
Kim
,
N. I.
, and
Kim
,
K.
,
2020
, “
A Deep Neural Network for Classification of Melt-Pool Images in Metal Additive Manufacturing
,”
J. Intell. Manuf.
,
31
(
2
), pp.
375
386
.
25.
Ho
,
S.
,
Zhang
,
W.
,
Young
,
W.
,
Buchholz
,
M.
,
Al Jufout
,
S.
,
Dajani
,
K.
,
Bian
,
L.
, and
Mozumdar
,
M.
,
2021
, “
DLAM: Deep Learning Based Real-Time Porosity Prediction for Additive Manufacturing Using Thermal Images of the Melt Pool
,”
IEEE Access
,
9
, pp.
115100
115114
.
26.
Tian
,
Q.
,
Guo
,
S.
,
Melder
,
E.
,
Bian
,
L.
, and
Guo
,
W. G.
,
2021
, “
Deep Learning-Based Data Fusion Method for In Situ Porosity Detection in Laser-Based Additive Manufacturing
,”
ASME J. Manuf. Sci. Eng.
,
143
(
4
), p.
041011
.
27.
Fathizadan
,
S.
,
Ju
,
F.
, and
Lu
,
Y.
,
2021
, “
Deep Representation Learning for Process Variation Management in Laser Powder Bed Fusion
,”
Addit. Manuf.
,
42
, p.
101961
.
28.
Ko
,
H.
,
Kim
,
J.
,
Lu
,
Y.
,
Shin
,
D.
,
Yang
,
Z.
, and
Oh
,
Y.
,
2022
, “
Spatial-Temporal Modeling Using Deep Learning for Real-Time Monitoring of Additive Manufacturing
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
St. Louis, Missouri, USA
,
August 14–17, 2022
.
29.
Larsen
,
S.
, and
Hooper
,
P. A.
,
2022
, “
Deep Semi-Supervised Learning of Dynamics for Anomaly Detection in Laser Powder Bed Fusion
,”
J. Intell. Manuf.
,
33
(
2
), pp.
457
471
.
30.
Yang
,
Z.
,
Lu
,
Y.
,
Yeung
,
H.
, and
Krishnamurty
,
S.
,
2020
, “
From Scan Strategy to Melt Pool Prediction: A Neighboring-Effect Modeling Method
,”
ASME J. Comput. Inf. Sci. Eng.
,
20
(
5
), p.
051001
.
31.
Yang
,
Z.
,
Lu
,
Y.
,
Yeung
,
H.
, and
Kirshnamurty
,
S.
,
2020
, “
3D Build Melt Pool Predictive Modeling for Powder Bed Fusion Additive Manufacturing
,”
2020 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Virtual, Online
,
Aug.17–19
.
32.
Schroff
,
F.
,
Kalenichenko
,
D.
, and
Philbin
,
J.
,
2015
, “
FaceNet: A Unified Embedding for Face Recognition and Clustering
,”
the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
,
Boston, MA
,
June 7–12
, pp.
815
823
.
33.
Lane
,
B.
,
Mekhontsev
,
S.
,
Grantham
,
S.
,
Vlasea
,
M.
,
Whiting
,
J.
,
Yeung
,
H.
,
Fox
,
J.
,
Zarobila
,
C.
,
Neira
,
J.
,
McGlauflin
,
M.
, and
Hanssen
,
L.
,
2016
, “
Design, Developments, and Results From the NIST Additive Manufacturing Metrology Testbed (AMMT)
,”
2016 International Solid Freeform Fabrication Symposium
,
The University of Texas in Austin
,
Aug. 8–10
.
34.
Lane
,
B.
,
Yeung
,
H.
, and
Yang
,
Z.
,
2022
, “
Statistical and Spatio-Temporal Data Features in Melt Pool Monitoring of Additive Manufacturing
,”
2022 IISE Annual Conference
,
Seattle, WA, USA
,
May 21–24
, pp.
1
6
.
35.
Yang
,
Z.
,
Adnan
,
M.
,
Lu
,
Y.
,
Cheng
,
F.-T.
,
Yang
,
H.-C.
,
Perisic
,
M.
, and
Ndiaye
,
Y.
,
2022
, “
Investigating Statistical Correlation Between Multi-modality In-Situ Monitoring Data for Powder Bed Fusion Additive Manufacturing
,”
2022 IEEE 18th International Conference on Automation Science and Engineering (CASE)
,
Mexico City, Mexico
,
Aug. 20–24
, IEEE, pp.
283
290
.
36.
Anselin
,
L.
,
1995
, “
Local Indicators of Spatial Association–LISA
,”
Geograph. Anal.
,
27
(
2
), pp.
93
115
.
You do not currently have access to this content.