Abstract
Additive manufacturing (AM) fabricates three-dimensional parts via layer-by-layer deposition and solidification of materials. Due to the complexity of this process, advanced sensing is increasingly employed to facilitate system visibility, leading to a large amount of high-dimensional and complex-structured data. While deep learning brings attractive characteristics for data-driven process monitoring and quality prediction, it is currently limited in the ability to assimilate engineering knowledge and offer model interpretability for understanding process–quality relationships. In addition, due to spatiotemporal correlations in AM, a melt-pool anomaly observed during fabrication is not always indicative of abnormal quality characteristics. There is a pressing need to go beyond pointwise analysis of melt pools and consider spatiotemporal effects for quality analysis. In this paper, we propose a novel feature learning framework guided by engineering knowledge for AM quality monitoring. First, engineering knowledge is integrated with deep learning to delineate various sources of process variations and extract melt-pool features that reflect quality-related relationships. Second, a 3D neighborhood model is designed to characterize spatiotemporal variations of melt pools based on their domain-informed features. The resulting 3D neighborhood profiles enable us to go beyond pointwise analysis of melt pools for capturing process–quality relationships. Finally, we built a regression model to predict internal density variations using 3D neighborhood profiles. Our experiments demonstrate that the proposed framework significantly outperforms traditional hand-crafted method and black-box learning in both the ability to provide quality-related features and predict internal density variations.