Graphical Abstract Figure

The expanded C-K method demonstrating the roles of both LLMs and human designers

Graphical Abstract Figure

The expanded C-K method demonstrating the roles of both LLMs and human designers

Close modal

Abstract

To obtain innovative concepts in the design, designers often need to retrieve and use interdisciplinary knowledge. Concept–knowledge (C–K) theory emphasizes the role of knowledge and introduces the knowledge (K) space and concept (C) space, employing operators to transform the contents between these spaces. Some studies, based on this theory, have successfully provided designers with different forms of knowledge to stimulate concept generation. However, the amount of knowledge provided in these studies is limited, and they fail to offer convenient methods for knowledge retrieval and reasoning, making it challenging to meet the needs of conceptual design across different fields. This paper proposes an enhanced C–K method leveraging large language models (LLMs) to help designers retrieve knowledge and uncover potentially new concepts. Our method redefines the C space and K space within the context of LLMs, dividing the properties of concept into function, appearance, and technology, and requiring the knowledge to correspond to these properties, thereby facilitating a structured connection between concepts and knowledge. Based on this definition, we achieved flexible knowledge retrieval and concept ideation leveraging LLMs. We also conducted a case study on wearable devices to validate our method. The results showed that our method helped designers to retrieve professional knowledge and inspired them to create feasible and innovative concepts.

References

1.
Chou
,
J.-R.
,
2014
, “
An Ideation Method for Generating New Product Ideas Using Triz, Concept Mapping, and Fuzzy Linguistic Evaluation Techniques
,”
Adv. Eng. Inform.
,
28
(
4
), pp.
441
454
.
2.
Liu
,
X.
,
Li
,
Y.
,
Pan
,
P.
, and
Li
,
W.
,
2011
, “
Research on Computer-Aided Creative Design Platform Based on Creativity Model
,”
Expert Syst. Appl.
,
38
(
8
), pp.
9973
9990
.
3.
Siddharth
,
L.
, and
Chakrabarti
,
A.
,
2018
, “
Evaluating the Impact of Idea-Inspire 4.0 on Analogical Transfer of Concepts
,”
AI Edam
,
32
(
4
), pp.
431
448
.
4.
Srinivasan
,
V.
,
Song
,
B.
,
Luo
,
J.
,
Subburaj
,
K.
,
Elara
,
M. R.
,
Blessing
,
L.
, and
Wood
,
K.
,
2018
, “
Does Analogical Distance Affect Performance of Ideation?
,”
ASME J. Mech. Des.
,
140
(
7
), p.
071101
.
5.
Luo
,
J.
,
Sarica
,
S.
, and
Wood
,
K. L.
,
2021
, “
Guiding Data-Driven Design Ideation by Knowledge Distance
,”
Knowl. Based Syst.
,
218
, p.
106873
.
6.
Hao
,
J.
,
Yan
,
Y.
,
Gong
,
L.
,
Wang
,
G.
, and
Lin
,
J.
,
2014
, “
Knowledge Map-Based Method for Domain Knowledge Browsing
,”
Decision Support Syst.
,
61
, pp.
106
114
.
7.
Sarica
,
S.
,
Han
,
J.
, and
Luo
,
J.
,
2023
, “
Design Representation as Semantic Networks
,”
Comput. Ind.
,
144
, p.
103791
.
8.
Chen
,
L.
,
Wang
,
P.
,
Dong
,
H.
,
Shi
,
F.
,
Han
,
J.
,
Guo
,
Y.
,
Childs
,
P. R.
,
Xiao
,
J.
, and
Wu
,
C.
,
2019
, “
An Artificial Intelligence Based Data-Driven Approach for Design Ideation
,”
J. Visual Commun. Image Represent.
,
61
, pp.
10
22
.
9.
He
,
Y.
,
Camburn
,
B.
,
Liu
,
H.
,
Luo
,
J.
,
Yang
,
M.
, and
Wood
,
K.
,
2019
, “
Mining and Representing the Concept Space of Existing Ideas for Directed Ideation
,”
ASME J. Mech. Des.
,
141
(
12
), p.
121101
.
10.
Shi
,
F.
,
Chen
,
L.
,
Han
,
J.
, and
Childs
,
P.
,
2017
, “
A Data-Driven Text Mining and Semantic Network Analysis for Design Information Retrieval
,”
ASME J. Mech. Des.
,
139
(
11
), p.
111402
.
11.
Chen
,
L.
,
Cai
,
Z.
,
Jiang
,
Z.
,
Long
,
Q.
,
Sun
,
L.
,
Childs
,
P.
, and
Zuo
,
H.
,
2023
, “
A Knowledge-Based Ideation Approach for Bio-inspired Design
,”
Proc. Des. Soc.
,
3
, pp.
231
240
.
12.
Huet
,
A.
,
Pinquié
,
R.
,
Véron
,
P.
,
Mallet
,
A.
, and
Segonds
,
F.
,
2021
, “
Cacda: A Knowledge Graph for a Context-Aware Cognitive Design Assistant
,”
Comput. Ind.
,
125
, p.
103377
.
13.
Jia
,
J.
,
Zhang
,
Y.
, and
Saad
,
M.
,
2022
, “
An Approach to Capturing and Reusing Tacit Design Knowledge Using Relational Learning for Knowledge Graphs
,”
Adv. Eng. Inform.
,
51
, p.
101505
.
14.
Li
,
X.
,
Chen
,
C.-H.
,
Zheng
,
P.
,
Wang
,
Z.
,
Jiang
,
Z.
, and
Jiang
,
Z.
,
2020
, “
A Knowledge Graph-Aided Concept–Knowledge Approach for Evolutionary Smart Product–Service System Development
,”
ASME J. Mech. Des.
,
142
(
10
), p.
101403
.
15.
Hatchuel
,
A.
, and
Weil
,
B.
,
2009
, “
CK Design Theory: An Advanced Formulation
,”
Res. Eng. Des.
,
19
(
4
), pp.
181
192
.
16.
Hatchuel
,
A.
,
Le Masson
,
P.
, and
Weil
,
B.
,
2011
, “
Teaching Innovative Design Reasoning: How Concept–Knowledge Theory Can Help Overcome Fixation Effects
,”
Artif. Intell. Eng. Des. Anal. Manuf.
,
25
(
1
), pp.
77
92
.
17.
Kazakci
,
A. O.
,
2005
, “
Designar: An Intelligent Design Assistant Based on CK Design Theory
,”
ASME 2005 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Long Beach, CA
,
Sept. 24–25
, pp.
7
15
.
18.
Gillier
,
T.
,
Piat
,
G.
,
Roussel
,
B.
, and
Truchot
,
P.
,
2010
, “
Managing Innovation Fields in a Cross-Industry Exploratory Partnership With C–K Design Theory
,”
J. Product Innov. Manage.
,
27
(
6
), pp.
883
896
.
19.
Weisbrod
,
G.
, and
Kroll
,
E.
,
2018
, “
Idea-Configuration-Evaluation (ICE): Development and Demonstration of a New Prescriptive Model of the Conceptual Engineering Design Process Based on Parameter Analysis and C–K Theory
,”
Res. Eng. Des.
,
29
(
2
), pp.
203
225
.
20.
Achiam
,
J.
,
Adler
,
S.
,
Agarwal
,
S.
,
Ahmad
,
L.
,
Akkaya
,
I.
,
Aleman
,
F. L.
,
Almeida
,
D.
, et al.,
2023
, “Gpt-4 Technical Report,” preprint arXiv:2303.08774.
21.
Zhu
,
Q.
, and
Luo
,
J.
,
2023
, “
Generative Transformers for Design Concept Generation
,”
ASME J. Comput. Inf. Sci. Eng.
,
23
(
4
), p.
041003
.
22.
Zhu
,
Q.
,
Zhang
,
X.
, and
Luo
,
J.
,
2023
, “
Biologically Inspired Design Concept Generation Using Generative Pre-trained Transformers
,”
ASME J. Mech. Des.
,
145
(
4
), p.
041409
.
23.
Honovich
,
O.
,
Shaham
,
U.
,
Bowman
,
S. R.
, and
Levy
,
O.
,
2023
, “
Instruction Induction: From Few Examples to Natural Language Task Descriptions
,” 6
1st Annual Meeting of the Association for Computational Linguistics
,
Toronto, Canada
,
July 9–14
, pp.
1935
1952
.
24.
Liu
,
J.
,
Shen
,
D.
,
Zhang
,
Y.
,
Dolan
,
W. B.
,
Carin
,
L.
, and
Chen
,
W.
,
2022
, “
What Makes Good In-Context Examples for GPT-3?
Proceedings of Deep Learning Inside Out (DeeLIO 2022): The 3rd Workshop on Knowledge Extraction and Integration for Deep Learning Architectures
,
Dublin, Ireland and Online
, pp.
100
114
.
25.
Maynez
,
J.
,
Narayan
,
S.
,
Bohnet
,
B.
, and
McDonald
,
R.
,
2020
, “
On Faithfulness and Factuality in Abstractive Summarization
,”
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics
,
Online
,
July
, pp.
1906
1919
.
26.
Anderson
,
B. R.
,
Shah
,
J. H.
, and
Kreminski
,
M.
,
2024
, “
Homogenization Effects of Large Language Models on Human Creative Ideation
,”
Proceedings of the 16th Conference on Creativity & Cognition
,
Chicago, IL
,
June 23
, pp.
413
425
.
27.
French
,
M. J.
,
Gravdahl
,
J.
, and
French
,
M.
,
1985
,
Conceptual Design for Engineers
,
Springer
,
Heidelberg
, pp.
1
12
.
28.
Dietrich
,
A.
,
2004
, “
The Cognitive Neuroscience of Creativity
,”
Psychon. Bull. Rev.
,
11
(
12
), pp.
1011
1026
.
29.
Daly
,
S. R.
,
Seifert
,
C. M.
,
Yilmaz
,
S.
, and
Gonzalez
,
R.
,
2016
, “
Comparing Ideation Techniques for Beginning Designers
,”
ASME J. Mech. Des.
,
138
(
10
), p.
101108
.
30.
Altshuller
,
G.
,
Shulyak
,
L.
, and
Rodman
,
S.
,
1999
,
The Innovation Algorithm: TRIZ, Systematic Innovation and Technical Creativity
,
Technical Innovation Center
,
Worcester, MA
.
31.
Nagamachi
,
M.
,
1995
, “
Kansei Engineering: A New Ergonomic Consumer-Oriented Technology for Product Development
,”
Int. J. Ind. Ergon.
,
15
(
1
), pp.
3
11
.
32.
Nagamachi
,
M.
,
2002
, “
Kansei Engineering as a Powerful Consumer-Oriented Technology for Product Development
,”
Appl. Ergon.
,
33
(
3
), pp.
289
294
.
33.
Gero
,
J. S.
, and
Kannengiesser
,
U.
,
2014
,
The Function-Behaviour-Structure Ontology of Design
,
Springer
,
London
, pp.
263
283
.
34.
Hatchuel
,
A.
, and
Weil
,
B.
,
2003
, “
A New Approach of Innovative Design: An Introduction to CK Theory
,” DS 31: Proceedings of ICED 03: The 14th International Conference on Engineering Design, Stockholm.
35.
Hatchuel
,
A.
, and
Weil
,
B.
,
2009
, “
CK Design Theory: An Advanced Formulation
,”
Res. Eng. Des.
,
19
(
4
), pp.
181
192
.
36.
Kroll
,
E.
,
2013
, “
Design Theory and Conceptual Design: Contrasting Functional Decomposition and Morphology With Parameter Analysis
,”
Res. Eng. Des.
,
24
, pp.
165
183
.
37.
Song
,
B.
,
Luo
,
J.
, and
Wood
,
K.
,
2019
, “
Data-Driven Platform Design: Patent Data and Function Network Analysis
,”
ASME J. Mech. Des.
,
141
(
2
), p.
021101
.
38.
Sarica
,
S.
,
Luo
,
J.
, and
Wood
,
K. L.
,
2020
, “
Technet: Technology Semantic Network Based on Patent Data
,”
Expert Syst. Appl.
,
142
, p.
112995
.
39.
Huang
,
Z.
,
Guo
,
X.
,
Liu
,
Y.
,
Zhao
,
W.
, and
Zhang
,
K.
,
2023
, “
A Smart Conflict Resolution Model Using Multi-layer Knowledge Graph for Conceptual Design
,”
Adv. Eng. Inform.
,
55
, p.
101887
.
40.
Cong
,
X.
,
Xiang
,
Z.
,
Li
,
X.
,
Dong
,
L.
,
Li
,
J.
, and
Chen
,
J.
,
2023
, “
A Knowledge Graph-Based Interaction Design Method for Smart Product-Service System Development
,”
J. Mech. Eng.
,
59
(
11
), pp.
94
105
.
41.
Vaswani
,
A.
,
Shazeer
,
N.
,
Parmar
,
N.
,
Uszkoreit
,
J.
,
Jones
,
L.
,
Gomez
,
A. N.
,
Kaiser
,
L. u.
, and
Polosukhin
,
I.
,
2017
, “
Attention is all you need
,”
Proceedings of the 31st International Conference on Neural Information Processing Systems, NIPS’17
,
Long Beach, CA
,
Dec. 4–9
, Curran Associates Inc., pp.
6000
6010
.
42.
Chowdhery
,
A.
,
Narang
,
S.
,
Devlin
,
J.
,
Bosma
,
M.
,
Mishra
,
G.
,
Roberts
,
A.
, and
Barham
,
P.
,
2023
, “
Palm: Scaling Language Modeling With Pathways
,”
J. Mach. Learn. Res.
,
24
(
240
), pp.
1
113
.
43.
Wu
,
T.
,
He
,
S.
,
Liu
,
J.
,
Sun
,
S.
,
Liu
,
K.
,
Han
,
Q.-L.
, and
Tang
,
Y.
,
2023
, “
A Brief Overview of Chatgpt: The History, Status Quo and Potential Future Development
,”
IEEE/CAA J. Autom. Sin.
,
10
(
5
), pp.
1122
1136
.
44.
Han
,
Y.
, and
Moghaddam
,
M.
,
2021
, “
Eliciting Attribute-Level User Needs From Online Reviews With Deep Language Models and Information Extraction
,”
ASME J. Mech. Des.
,
143
(
6
), p.
061403
.
45.
Qiu
,
Y.
, and
Jin
,
Y.
,
2023
, “
Document Understanding-Based Design Support: Application of Language Model for Design Knowledge Extraction
,”
ASME J. Mech. Des.
,
145
(
12
), p.
121401
.
46.
Wang
,
B.
,
Zuo
,
H.
,
Cai
,
Z.
,
Yin
,
Y.
,
Childs
,
P.
,
Sun
,
L.
, and
Chen
,
L.
,
2023
, “
A Task-Decomposed AI-Aided Approach for Generative Conceptual Design
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Boston, MA
,
Aug. 20–23
, Volume 87349, p.
V006T06A009
.
47.
Jiang
,
S.
, and
Luo
,
J.
,
2024
, “Autotriz: Artificial Ideation With Triz and Large Language Models,” preprint arXiv:2403.13002.
48.
Zhu
,
Q.
, and
Luo
,
J.
,
2023
, “
Generative Transformers for Design Concept Generation
,”
ASME J. Comput. Inf. Sci. Eng.
,
23
(
4
), p.
041003
.
49.
Pahl
,
G.
,
Beitz
,
W.
,
Feldhusen
,
J.
, and
Grote
,
K.-H.
,
1996
,
Engineering Design: A Systematic Approach
,
Springer
,
London
.
50.
Hatchuel
,
A.
,
Le Masson
,
P.
, and
Weil
,
B.
,
2004
, “
CK Theory in Practice: Lessons from Industrial Applications
,”
DS 32: Proceedings of DESIGN 2004, the 8th International Design Conference
,
Dubrovnik, Croatia
,
May 18
, pp.
245
258
.
51.
Chang
,
Y.
,
Wang
,
X.
,
Wang
,
J.
,
Wu
,
Y.
,
Yang
,
L.
,
Zhu
,
K.
, and
Chen
,
H.
,
2024
, “
A Survey on Evaluation of Large Language Models
,”
ACM Trans. Intell. Syst. Technol.
,
15
(
3
), pp.
1
45
.
52.
Dai
,
D.
,
Sun
,
Y.
,
Dong
,
L.
,
Hao
,
Y.
,
Ma
,
S.
,
Sui
,
Z.
, and
Wei
,
F.
,
2023
, “
Why Can GPT Learn In-Context Language? Models Secretly Perform Gradient Descent as Meta-optimizers
,”
Findings of the Association for Computational Linguistics: ACL 2023
,
Toronto, Canada
,
July
, pp.
4005
4019
.
53.
Kojima
,
T.
,
Gu
,
S. S.
,
Reid
,
M.
,
Matsuo
,
Y.
, and
Iwasawa
,
Y.
,
2022
, “
Large Language Models are Zero-Shot Reasoners
,”
Adv. Neural Inform. Process. Syst.
,
35
, pp.
22199
22213
.
54.
Ulrich
,
K. T.
, and
Eppinger
,
S. D.
,
2016
,
Product Design and Development
,
McGraw-Hill
,
New York
.
55.
Norman
,
D. A.
,
2002
,
The Psychology of Everyday Things
,
MIT Press
,
Cambridge, MA
.
56.
Wei
,
J.
,
Wang
,
X.
,
Schuurmans
,
D.
,
Bosma
,
M.
,
Chi
,
E.
,
Le
,
Q. V.
, and
Zhou
,
D.
,
2022
,
Advances in Neural Information Processing Systems
,
S.
Koyejo
,
S.
Mohamed
,
A.
Agarwal
,
D.
Belgrave
,
K.
Cho
, and
A.
Oh
, eds.,
MIT Press
,
Cambridge, MA
, pp.
24824
24837
.
57.
Rugman
,
A. M.
, and
D’Cruz
,
J. R.
,
1993
, “
The “Double Diamond” Model of International Competitiveness: The Canadian Experience
,”
Manage. Int. Rev.
,
33
, pp.
17
39
. https://www.jstor.org/stable/40228188
58.
Van Boeijen
,
A.
,
Daalhuizen
,
J.
,
Van Der Schoor
,
R.
, and
Zijlstra
,
J.
,
2014
,
Delft Design Guide: Design Strategies and Methods
,
Delft University of Technology
.
59.
Tonmoy
,
S.
,
Zaman
,
S.
,
Jain
,
V.
,
Rani
,
A.
,
Rawte
,
V.
,
Chadha
,
A.
, and
Das
,
A.
,
2024
, “A Comprehensive Survey of Hallucination Mitigation Techniques in Large Language Models,” preprint arXiv:2401.01313.
60.
Song
,
C. H.
,
Wu
,
J.
,
Washington
,
C.
,
Sadler
,
B. M.
,
Chao
,
W.-L.
, and
Su
,
Y.
,
2023
, “
LLM-Planner: Few-Shot Grounded Planning for Embodied Agents With Large Language Models
,”
Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)
,
Paris, France
,
Oct. 2–6
, pp.
2998
3009
.
61.
Ji
,
Z.
,
Lee
,
N.
,
Frieske
,
R.
,
Yu
,
T.
,
Su
,
D.
,
Xu
,
Y.
,
Ishii
,
E.
,
Bang
,
Y. J.
,
Madotto
,
A.
, and
Fung
,
P.
,
2023
, “
Survey of Hallucination in Natural Language Generation
,”
ACM Comput. Surv.
,
55
(
12
), pp.
1
38
.
62.
Heiss
,
L.
, and
Kokshagina
,
O.
,
2021
, “
Tactile Co-design Tools for Complex Interdisciplinary Problem Exploration in Healthcare Settings
,”
Des. Stud.
,
75
, p.
101030
.
63.
Chen
,
L.
,
Jiang
,
Z.
,
Xia
,
D.
,
Cai
,
Z.
,
Sun
,
L.
,
Childs
,
P.
, and
Zuo
,
H.
,
2024
, “
BidTrainer: An LLMs-Driven Education Tool for Enhancing the Understanding and Reasoning in Bio-inspired Design
,”
Proceedings of the 2024 CHI Conference on Human Factors in Computing Systems
,
Honolulu, HI
,
May 11
, pp.
1
20
.
64.
Chen
,
L.
,
Jing
,
Q.
,
Tsang
,
Y.
,
Wang
,
Q.
,
Sun
,
L.
, and
Luo
,
J.
,
2024
, “
DesignFusion: Integrating Generative Models for Conceptual Design Enrichment
,”
ASME J. Mech. Des.
,
146
(
11
), p.
111703
.
65.
Yu
,
S.
,
Huang
,
T.
,
Liu
,
M.
, and
Wang
,
Z.
,
2023
, “
Bear: Revolutionizing Service Domain Knowledge Graph Construction With LLM
,”
International Conference on Service-Oriented Computing
,
Rome, Italy
,
Nov. 28 – Dec. 1
, pp.
339
346
.
66.
Shinn
,
N.
,
Cassano
,
F.
,
Gopinath
,
A.
,
Narasimhan
,
K.
, and
Yao
,
S.
,
2023
, “Reflexion: Language Agents With Verbal Reinforcement Learning,”
Advances in Neural Information Processing Systems
, Vol.
36
,
A.
Oh
,
T.
Naumann
,
A.
Globerson
,
K.
Saenko
,
M.
Hardt
, and
S.
Levine
, eds.,
MIT Press
,
Cambridge, MA
, pp.
8634
8652
.
You do not currently have access to this content.