Abstract

Many engineering design optimization problems are multi-objective, constrained, and contain uncertain parameters. For these problems, it is desirable to obtain solutions that are robustly optimum. A robust optimal solution is one which remains feasible and optimal despite perturbations in the uncertainty parameters. This article presents a scenario-generation-based method for solving multi-objective robust optimization (MORO) problems. The approach follows a sequential, single-level optimization problem workflow, with the uncertainty handled by a fixed sampling method. The proposed approach is applied to an unmanned surface vessel (USV) case study problem. The results obtained and subsequent performance analysis show that the proposed approach generally performs well.

References

1.
Hu
,
W.
,
Li
,
M.
,
Azarm
,
S.
,
Al Hashimi
,
S.
,
Almansoori
,
A.
, and
Al-Qasas
,
N.
,
2009
, “
Improving Multi-Objective Robust Optimization Under Interval Uncertainty Using Worst Possible Point Constraint Cuts
,” 35th Design Automation Conference, Parts A and B, Vol. 5, ASMEDC, San Diego, CA, Aug. 30–Sept. 2, pp.
1193
1203
.
2.
Xie
,
T.
,
Jiang
,
P.
,
Zhou
,
Q.
,
Shu
,
L.
,
Zhang
,
Y.
,
Meng
,
X.
, and
Wei
,
H.
,
2018
, “
Advanced Multi-Objective Robust Optimization Under Interval Uncertainty Using Kriging Model and Support Vector Machine
,”
ASME J. Comput. Inf. Sci. Eng.
,
18
(
4
), p.
041012
.
3.
Zhou
,
Q.
,
Shao
,
X.
,
Jiang
,
P.
,
Xie
,
T.
,
Hu
,
J.
,
Shu
,
L.
,
Cao
,
L.
, and
Gao
,
Z.
,
2018
, “
A Multi-objective Robust Optimization Approach for Engineering Design Under Interval Uncertainty
,”
Eng. Comput.
,
35
(
2
), pp.
580
603
.
4.
Wei
,
H.
,
Shu
,
L.
,
Yang
,
Y.
,
Zhou
,
Q.
,
Zhong
,
L.
, and
Jiang
,
P.
,
2021
, “
An Improved Sequential Multi-Objective Robust Optimisation Approach Considering Interval Uncertainty Reduction Under Mixed Uncertainties
,”
J. Eng. Des.
,
32
(
2
), pp.
61
89
.
5.
Cheng
,
S.
,
Zhou
,
J.
, and
Li
,
M.
,
2015
, “
A New Hybrid Algorithm for Multi-objective Robust Optimization With Interval Uncertainty
,”
ASME J. Mech. Des.
,
137
(
2
), p.
021401
.
6.
Li
,
M.
,
Azarm
,
S.
,
Williams
,
N.
,
Al Hashimi
,
S.
,
Almansoori
,
A.
, and
Al Qasas
,
N.
,
2009
, “
Integrated Multi-Objective Robust Optimization and Sensitivity Analysis With Irreducible and Reducible Interval Uncertainty
,”
Eng. Optim.
,
41
(
10
), pp.
889
908
.
7.
Yin
,
F.
,
Liu
,
Y.
, and
Chen
,
Y.
,
2023
, “
Distributionally Robust Optimisation Model for Multi-Objective Hub Location Problem Via Considering Ambiguousness
,”
Transportmetrica A: Transp. Sci.
,
19
(
3
), p.
2094494
.
8.
Kapteyn
,
M. G.
,
Willcox
,
K. E.
, and
Philpott
,
A.
,
2018
, “
A Distributionally Robust Approach to Black-Box Optimization
,” 2018 AIAA Non-deterministic Approaches Conference, Kissimmee, FL, Jan. 8–12, p.
0666
.
9.
Zhang
,
P.
,
Liu
,
Y.
,
Yang
,
G.
, and
Zhang
,
G.
,
2022
, “
A Multi-Objective Distributionally Robust Model for Sustainable Last Mile Relief Network Design Problem
,”
Ann. Oper. Res.
,
309
(
2
), pp.
1
42
.
10.
Li
,
M.
,
Azarm
,
S.
, and
Boyars
,
A.
,
2006
, “
A New Deterministic Approach Using Sensitivity Region Measures for Multi-objective Robust and Feasibility Robust Design Optimization
,”
ASME J. Mech. Des.
,
128
(
4
), pp.
874
883
.
11.
Gabrel
,
V.
,
Murat
,
C.
, and
Thiele
,
A.
,
2014
, “
Recent Advances in Robust Optimization: An Overview
,”
Eur. J. Oper. Res.
,
235
(
3
), pp.
471
483
.
12.
Li
,
M.
,
2007
, “
Robust Optimization and Sensitivity Analysis With Multi-Objective Genetic Algorithms: Single- and Multi-Disciplinary Applications
,” Ph.D. dissertation,
University of Maryland, College Park
,
College Park, MD
.
13.
Deb
,
K.
,
2001
,
Multi-Objective Optimization Using Evolutionary Algorithms
, 1st ed.,
John Wiley & Sons
,
Chichester, West Sussex, UK
.
14.
Gunantara
,
N.
,
2018
, “
A Review of Multi-Objective Optimization: Methods and Its Applications
,”
Cogent Eng.
,
5
(
1
), p.
1502242
.
15.
Ben-Tal
,
A.
,
El Ghaoui
,
L.
, and
Nemirovskiĭ
,
A. S.
,
2009
,
Robust Optimization
,
Princeton University Press
,
Princeton, NJ
.
16.
Rudnick-Cohen
,
E.
,
Herrmann
,
J. W.
, and
Azarm
,
S.
,
2020
, “
Non-Convex Feasibility Robust Optimization Via Scenario Generation and Local Refinement
,”
ASME J. Mech. Des.
,
142
(
5
), p.
051703
.
17.
Hu
,
W.
,
Li
,
M.
,
Azarm
,
S.
, and
Almansoori
,
A.
,
2011
, “
Multi-Objective Robust Optimization Under Interval Uncertainty Using Online Approximation and Constraint Cuts
,”
ASME J. Mech. Des.
,
133
(
6
), p.
061002
.
18.
Hu
,
W.
,
2012
, “
Approximation Assisted Multiobjective and Collaborative Robust Optimization Under Interval Uncertainty
,” Ph.D. dissertation,
University of Maryland, College Park
,
College Park, MD
.
19.
Kania
,
R. J.
,
2022
, “
Single- and Multi-Objective Feasibility Robust Optimization Under Interval Uncertainty With Surrogate Modelling
,” Ph.D. dissertation,
University of Maryland, College Park
,
College Park, MD
.
20.
Gunawan
,
S.
, and
Azarm
,
S.
,
2005
, “
Multi-Objective Robust Optimization Using a Sensitivity Region Concept
,”
Struct. Multidiscipl. Optim.
,
29
(
1
), pp.
50
60
.
21.
Xia
,
T.
, and
Li
,
M.
,
2021
, “
An Efficient Multi-objective Robust Optimization Method by Sequentially Searching From Nominal Pareto Solutions
,”
ASME J. Comput. Inf. Sci. Eng.
,
21
(
4
), p.
041010
.
22.
Erdoğan
,
E.
, and
Iyengar
,
G.
,
2006
, “
Ambiguous Chance Constrained Problems and Robust Optimization
,”
Math. Program.
,
107
, pp.
37
61
.
23.
Xu
,
Y.
,
Huang
,
G. H.
,
Qin
,
X. S.
, and
Cao
,
M. F.
,
2009
, “
SRCCP: A Stochastic Robust Chance-Constrained Programming Model for Municipal Solid Waste Management Under Uncertainty
,”
Resour. Conserv. Recycl.
,
53
(
6
), pp.
352
363
.
24.
Li
,
Z.
, and
Li
,
Z.
,
2015
, “
Optimal Robust Optimization Approximation for Chance Constrained Optimization Problem
,”
Comput. Chem. Eng.
,
74
, pp.
89
99
.
25.
Parpas
,
P.
,
Rustem
,
B.
, and
Pistikopoulos
,
E. N.
,
2009
, “
Global Optimization of Robust Chance Constrained Problems
,”
J. Global Optim.
,
43
(
2
), pp.
231
247
.
26.
Ehrgott
,
M.
,
Ide
,
J.
, and
Schöbel
,
A.
,
2014
, “
Minmax Robustness for Multi-objective Optimization Problems
,”
Eur. J. Oper. Res.
,
239
(
1
), pp.
17
31
.
27.
Groetzner
,
P.
, and
Werner
,
R.
,
2022
, “
Multiobjective Optimization Under Uncertainty: A Multiobjective Robust (Relative) Regret Approach
,”
Eur. J. Oper. Res.
,
296
(
1
), pp.
101
115
.
28.
Botte
,
M.
, and
Schöbel
,
A.
,
2019
, “
Dominance for Multi-objective Robust Optimization Concepts
,”
Eur. J. Oper. Res.
,
273
(
2
), pp.
430
440
.
29.
Xu
,
B.
,
Sun
,
Y.
,
Huang
,
X.
,
Zhong
,
P.
,
Zhu
,
F.
,
Zhang
,
J.
,
Wang
,
X.
, et al.,
2022
, “
Scenario-Based Multiobjective Robust Optimization and Decision-Making Framework for Optimal Operation of a Cascade Hydropower System Under Multiple Uncertainties
,”
Water Resour. Res.
,
58
(
4
), p.
e2021WR030965
.
30.
Wang
,
B.
,
Xia
,
X.
,
Meng
,
H.
, and
Li
,
T.
,
2017
, “
Bad-Scenario-Set Robust Optimization Framework With Two Objectives for Uncertain Scheduling Systems
,”
IEEE/CAA J. Autom. Sin.
,
4
(
1
), pp.
143
153
.
31.
Li
,
W.
,
Zhou
,
X.
,
Huang
,
H.
,
Garg
,
A.
, and
Gao
,
L.
,
2024
, “
Risk-Based Design Optimization Via Scenario Generation and Genetic Programming Under Hybrid Uncertainties
,”
ASME J. Comput. Inf. Sci. Eng.
,
24
(
10
), p.
101001
.
32.
MATLAB
,
2022
, “Find Pareto Front of Multiple Fitness Functions Using Genetic Algorithm—MATLAB gamultiobj,” https://www.mathworks.com/help/gads/gamultiobj.html
33.
Loeppky
,
J. L.
,
Sacks
,
J.
, and
Welch
,
W. J.
,
2009
, “
Choosing the Sample Size of a Computer Experiment: A Practical Guide
,”
Technometrics
,
51
(
4
), pp.
366
376
.
34.
Hazra
,
I.
,
Chatterjee
,
A.
,
Southgate
,
J.
,
Weiner
,
M. J.
,
Groth
,
K. M.
, and
Azarm
,
S.
,
2024
, “
A Reliability-Based Optimization Framework for Planning Operational Profiles for Unmanned Systems
,”
ASME J. Mech. Des.
,
146
(
5
), p.
051704
.
35.
Fossen
,
T. I.
, and
Perez
,
T.
,
2004
, “Marine Systems Simulator (MSS),” https://github.com/cybergalactic/MSS, Accessed September 5, 2023..
36.
Fossen
,
T. I.
,
2011
,
Handbook of Marine Craft Hydrodynamics and Motion Control
, 1st ed.,
John Wiley & Sons Ltd
,
Chichester, West Sussex, UK
.
37.
PyTorch
,
2024
, “MLP—Torchvision Main Documentation,” https://pytorch.org/vision/main/generated/torchvision.ops.MLP.html
38.
scikit learn
,
2024
, “3.4. Metrics and Scoring: Quantifying the Quality of Predictions, scikit-learn,” https://scikit-learn.org/stable/modules/model_evaluation.html, Accessed October 27, 2024.
39.
BayesFusion, LLC
,
2023
,
GeNIe Modeler: Programmer's Manual
.
40.
MATLAB
,
2022
, “Paretosearch Algorithm—MATLAB & Simulink,” MathWorks, https://www.mathworks.com/help/gads/paretosearch-algorithm.html, Accessed October 28, 2024.
41.
Custódio
,
A. L.
,
Madeira
,
J. F. A.
,
Vaz
,
A. I. F.
, and
Vicente
,
L. N.
,
2011
, “
Direct Multisearch for Multiobjective Optimization
,”
SIAM J. Optim.
,
21
(
3
), pp.
1109
1140
.
42.
MATLAB
,
2022
, “Constrained Nonlinear Optimization Algorithms—MATLAB & Simulink,” MathWorks, https://www.mathworks.com/help/optim/ug/constrained-nonlinear-optimization-algorithms.html#brnpd5f, Accessed October 28, 2024.
43.
Byrd
,
R. H.
,
Hribar
,
M. E.
, and
Nocedal
,
J.
,
1999
, “
An Interior Point Algorithm for Large-Scale Nonlinear Programming
,”
SIAM J. Optim.
,
9
(
4
), pp.
877
900
.
44.
Byrd
,
R. H.
,
Gilbert
,
J. C.
, and
Nocedal
,
J.
,
2000
, “
A Trust Region Method Based on Interior Point Techniques for Nonlinear Programming
,”
Math. Program.
,
89
(
1
), pp.
149
185
.
45.
Waltz
,
R.
,
Morales
,
J.
,
Nocedal
,
J.
, and
Orban
,
D.
,
2006
, “
An Interior Algorithm for Nonlinear Optimization That Combines Line Search and Trust Region Steps
,”
Math. Program.
,
107
(
3
), pp.
391
408
.
You do not currently have access to this content.