Previous work by the authors developed algorithms for simplifying the structure of a lumped dynamic system model and reducing its order. This paper extends this previous work to enable simultaneous model structure and order reduction. Specifically, it introduces a new energy-based metric to evaluate the relative importance of energetic connections in a model. This metric (1) accounts for correlations between energy flow patterns in a model using the Karhunen–Loève expansion; (2) examines all energetic connections in a model, thereby assessing the relative importance of both energetic components and their interactions, and enabling both order and structural reduction; and (3) is realization preserving, in the sense of not requiring a state transformation. A reduction scheme based on this metric is presented and illustrated using a simple example. The example shows that the proposed method can successfully concurrently reduce model order and structure without requiring a realization change, and that it can provide an improved assessment of the importance of various model components due to its correlation-based nature.

1.
Wilson
,
B. H.
, and
Stein
,
J. L.
, 1995, “
An Algorithm for Obtaining Proper Models of Distributed and Discrete Systems
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
117
(
4
), pp.
534
540
.
2.
Skelton
,
R. E.
, and
Yousuff
,
A.
, 1983, “
Component Cost Analysis of Large Scale Systems
,”
Int. J. Control
0020-7179,
37
(
2
), pp.
285
304
.
3.
Moore
,
B. C.
, 1981, “
Principal Component Analysis in Linear Systems: Controllability, Observability, and Model Reduction
,”
IEEE Trans. Autom. Control
0018-9286,
26
(
1
), pp.
17
32
.
4.
Shieh
,
L. -S.
,
Chang
,
F. -R.
, and
Yates
,
R. E.
, 1986, “
The Generalized Matrix Continued-Fraction Descriptions and Their Application to Model Simplification
,”
Int. J. Syst. Sci.
0020-7721,
17
(
1
), pp.
1
19
.
5.
Hutton
,
M. F.
, and
Friedland
,
B.
, 1975, “
Routh Approximations for Reducing Order of Linear, Time-Invariant Systems
,”
IEEE Trans. Autom. Control
0018-9286,
20
(
3
), pp.
329
337
.
6.
Shamash
,
Y.
, 1975, “
Model Reduction Using the Routh Stability Criterion and the Pade Approximation Technique
,”
Int. J. Control
0020-7179,
21
(
3
), pp.
475
484
.
7.
Glover
,
K.
, 1984, “
All Optimal Hankel-Norm Approximations of Linear Multivariable Systems and Their L-Infinity Error Bounds
,”
Int. J. Control
0020-7179,
39
(
6
), pp.
1115
1193
.
8.
Wilson
,
D. A.
, 1970, “
Optimum Solution of Model-Reduction Problem
,”
Proc. Inst. Electr. Eng.
,
117
, pp.
1161
1165
. 0020-3270
9.
Hyland
,
D. C.
, and
Bernstein
,
D. S.
, 1985, “
The Optimal Projection Equations for Model Reduction and the Relationships Among the Methods of Wilson, Skelton, and Moore
,”
IEEE Trans. Autom. Control
0018-9286,
30
(
12
), pp.
1201
1211
.
10.
Lumley
,
J. L.
, 1967, “
The Structure of Inhomogeneous Turbulent Flow
,”
Atmospheric Turbulence and Radio Wave Propagation
,
A. M.
Yaglom
and
V. I.
Tatarski
, eds.,
Nauka
,
Moscow
, pp.
166
178
.
11.
Holmes
,
P.
,
Lumley
,
J. L.
, and
Berkooz
,
G.
, 1996,
Turbulence, Coherent Structures, Dynamical Systems and Symmetry
,
Cambridge University Press
,
Cambridge
.
12.
Kokotovic
,
P.
,
Khalil
,
H. K.
, and
O'Reilly
,
J.
, 1986,
Singular Perturbation Methods in Control: Analysis and Design
,
Academic
,
London
.
13.
Margolis
,
D. L.
, and
Young
,
G. E.
, 1977, “
Reduction of Models of Large Scale Lumped Structures Using Normal Modes and Bond Graphs
,”
J. Franklin Inst.
0016-0032,
304
(
1
), pp.
65
79
.
14.
Fertis
,
D. G.
, 1995,
Mechanical and Structural Vibrations
,
Wiley
,
New York
.
15.
Ersal
,
T.
,
Fathy
,
H. K.
,
Louca
,
L. S.
,
Rideout
,
D. G.
, and
Stein
,
J. L.
, 2008, “
A Review of Proper Modeling Techniques
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
130
(
6
), pp.
061008
.
16.
Rosenberg
,
R. C.
and
Zhou
,
T.
, 1988, “
Power-Based Model Insight
,”
Proceedings of Automated Modeling for Design
, Chicago, IL, Nov. 27–Dec. 2 1988,,
American Society of Mechanical Engineers (ASME)
,
New York
, Vol.
8
, pp.
61
67
.
17.
Louca
,
L. S.
,
Stein
,
J. L.
,
Hulbert
,
G. M.
, and
Sprague
,
J.
, 1997, “
Proper Model Generation: An Energy-Based Methodology
,”
Proceedings of 1997 International Conference on Bond Graph Modeling
, Phoenix, AZ, Vol.
29
, pp.
44
49
.
18.
Rideout
,
D. G.
,
Stein
,
J. L.
, and
Louca
,
L. S.
, 2004, “
System Partitioning and Physical-Domain Model Reduction Through Assessment of Bond Graph Junction Structure
,”
Proceedings of IMAACA ‘04, Bond Graph Techniques for Modeling Dynamic Systems
, Genoa, Italy, Oct. 28–30.
19.
Ersal
,
T.
,
Fathy
,
H. K.
, and
Stein
,
J. L.
, 2009, “
Structural Simplification of Modular Bond-Graph Models Based on Junction Inactivity
,”
Simul. Model. Pract. Theory
,
17
(
1
), pp.
175
196
. 1569-190X
20.
Ersal
,
T.
,
Fathy
,
H. K.
, and
Stein
,
J. L.
, 2009, “
Orienting Body Coordinate Frames Using Karhunen–Loève Expansion for More Effective Structural Simplification
,”
Simul. Model. Pract. Theory
,
17
(
1
), pp.
197
210
. 1569-190X
21.
Karnopp
,
D.
, and
Rosenberg
,
R. C.
, 1975,
System Dynamics: A Unified Approach
,
Wiley
.
New York
.
You do not currently have access to this content.