The prediction of a mechanical structure’s rigid dynamic behavior requires knowledge of ten inertia parameters. In cases where no accurate models of the structure’s geometry and mass distribution are available, the ten inertia parameters must be determined experimentally. Experimental methods based on measurements of frequency response functions (FRFs) are subject to bias errors due to suspension effects. This paper proposes a method for eliminating these errors by using a single-wire suspension condition and modeling the suspension’s effect on the FRFs. The suspension model depends only on the unknown rigid body properties and on three easy-to-measure parameters. The rigid body properties are determined by fitting FRFs derived from the suspension model and from the rigid body mass matrix directly to the experimental FRF data. Eliminating the suspension bias makes it possible to use low-frequency FRF data, which in turn justifies the assumption of rigid behavior. In this way, bias-free rigid body property identification can be achieved without modal curve fitting. Simulation and experimental results are presented showing the effectiveness of the approach.

1.
Bretl
,
J.
, and
Conti
,
P.
, 1993, “
Rigid Body Mass Properties From Test Data
,”
Proceedings of the Fifth International Modal Analysis Conference (IMAC)
, pp.
655
689
.
2.
Fregolent
,
A.
, and
Sestieri
,
A.
, 1992, “
Identification of Rigid Body Inertia Properties From Experimental Data
,”
Proceedings of the Tenth International Modal Analysis Conference (IMAC)
, pp.
219
225
.
3.
Wei
,
Y.
, and
Reis
,
J.
, 1989, “
Experimental Determination of Rigid Body Inertia Properties
,”
Proceedings of the Seventh International Modal Analysis Conference (IMAC)
, pp.
603
606
.
4.
Butsuen
,
T.
,
Okuma
,
M.
, and
Nagamatsu
,
A.
, 1986, “
Application of Direct System Identification Method for Engine Rigid Body Mount System
,” SAE Paper No. 860551.
5.
Magnus
,
J.
,
Passerello
,
C.
, and
VanKarsen
,
C.
, 1992, “
Direct Estimation of Rigid Body Properties From Frequency Response Functions
,”
Proceedings of the Tenth International Modal Analysis Conference (IMAC)
, pp.
259
264
.
6.
Toivola
,
J.
, and
Nuutila
,
O.
, 1993, “
Comparison of Three Methods for Determining Rigid Body Inertia Properties From Frequency Response Functions
,”
Proceedings of the 11th International Modal Analysis Conference (IMAC)
, pp.
1126
1132
.
7.
Conti
,
P.
, and
Bretl
,
J.
, 1989, “
Mount Stiffness and Inertia Properties From Modal Test Data
,”
ASME J. Vib., Acoust., Stress, Reliab. Des.
0739-3717,
111
, pp.
134
138
.
8.
Almeida
,
R.
,
Urgueira
,
A.
, and
Maia
,
N.
, 2007, “
Identification of Rigid Body Properties From Vibration Measurements
,”
J. Sound Vib.
,
299
(
4–5
), pp.
884
899
. 0022-460X
9.
Pandit
,
S. M.
, and
Hu
,
Z. -Q.
, 1994, “
Determination of Rigid Body Characteristics From Time Domain Modal Test Data
,”
J. Sound Vib.
0022-460X,
177
(
1
), pp.
31
41
.
10.
Wagner
,
N.
, 2002, “
Use of Matrix Logarithms in System Identification
,”
Proceedings of the Fifth World Congress on Computational Mechanics (WCCM-V)
.
11.
VanKarsen
,
J.
,
Johnson
,
D.
,
Blough
,
J.
,
Rao
,
M.
, and
Ge
,
T.
, 2007, “
Estimation of Powertrain Inertia Properties Via an In-Situ Method
,” SAE Paper No. 2007-01-2410.
12.
Schedlinski
,
C.
, and
Link
,
M.
, 1996, “
Identification of Rigid Body Properties Using Base Excitation and Measured Interface Forces
,”
Proceedings of the 1996 ESA Conference on Spacecraft Structures, Materials and Mechanical Testing
.
13.
Stebbins
,
M. A.
, and
Brown
,
D. L.
, 1998, “
Rigid Body Inertia Property Estimation Using a Six-Axis Load Cell
,”
Proceedings of the 16th International Modal Analysis Conference (IMAC)
, pp.
900
906
.
14.
Lee
,
H.
,
Lee
,
Y. -B.
, and
Park
,
Y. -S.
, 1999, “
Response and Excitation Points Selection for Accurate Rigid Body Inertia Properties Identification
,”
Mech. Syst. Signal Process.
,
13
(
4
), pp.
571
592
. 0888-3270
15.
Ewins
,
D. J.
, 1984,
Modal Testing: Theory and Practice
,
Research Studies
,
Letchworth, Hertfordshire, England
.
16.
Lau
,
J.
, and
Deblauwe
,
F.
, 2007, “
Advanced FRF Based Determination of Structural Inertia Properties
,” SAE Paper No. 2007-01-2329.
17.
Kloepper
,
R.
, and
Okuma
,
M.
, 2008, “
Increased Accuracy of Residual-Inertia-Based Rigid Body Identification Through Direct Fitting of Inertia Parameters to FRF Data
,”
Proceedings of the International Conference on Noise Vibration Engineering (ISMA2008)
, pp.
2645
2659
.
You do not currently have access to this content.