This paper presents a new approach to blind identification of a class of two-channel infinite impulse response (IIR) systems with applicability to clinical cardiovascular monitoring. Specifically, this paper deals with a class of two-channel IIR systems describing wave propagation dynamics. For this class of systems, this paper first derives a blind identifiability condition and develops a blind identification algorithm, which is able to determine both the numerator and denominator polynomials of the channel dynamics uniquely. This paper also develops a new input signal deconvolution algorithm that can reconstruct the input signal from the identified two-channel dynamics and the associated two-channel measurements. These methods are applied to identify the pressure wave propagation dynamics in the cardiovascular system and reconstruct the aortic blood pressure and flow signals from blood pressure measurements taken at two distinct extremity locations. Persistent excitation, model identifiability, and asymptotic variance are analyzed to quantify the method’s validity, accuracy, and reliability without employing direct measurement of the aortic blood pressure and flow signals. The experimental results based on 83 data segments obtained from a swine subject illustrate how the cardiovascular dynamics can be identified accurately and reliably, and the aortic blood pressure and flow signals can be stably reconstructed from two distinct peripheral blood pressure signals under diverse physiologic conditions.

1.
Nichols
,
W.
, and
O’Rourke
,
M.
, 1998,
McDonald’s Blood Flow in Arteries
,
Arnold
,
London
.
2.
Karamanoglu
,
M.
,
Gallagher
,
D.
,
Avolio
,
A.
, and
O’Rourke
,
M.
, 1995, “
Pressure Wave Propagation in a Multibranched Model of the Human Upper Limb
,”
Am. J. Physiol.
0002-9513,
269
(
4
), pp.
1363
1369
.
3.
Fetics
,
B.
,
Nevo
,
E.
,
Chen
,
C. -H.
, and
Kass
,
D.
, 1999, “
Parametric Model Derivation of Transfer Function for Noninvasive Estimation of Aortic Pressure by Radial Tonometry
,”
IEEE Trans. Biomed. Eng.
0018-9294,
46
(
6
), pp.
698
706
.
4.
Gallagher
,
D.
,
Adji
,
A.
, and
O’Rourke
,
M.
, 2004, “
Validation of the Transfer Function Technique for Generating Central From Peripheral Upper Limb Pressure Waveform
,”
Am. J. Hypertens.
0895-7061,
17
(
11
), pp.
1059
1067
.
5.
Jansen
,
J.
,
Schreuder
,
J.
,
Mulier
,
J.
,
Smith
,
N.
,
Settels
,
J.
, and
Wesseling
,
K.
, 2001, “
A Comparison of Cardiac Output Derived From the Arterial Blood Pressure Wave Against Thermodilution in Cardiac Surgery Patients
,”
Br. J. Anaesth.
0007-0912,
87
(
2
), pp.
212
222
.
6.
Stok
,
W.
,
Westerhof
,
B.
, and
Karemaker
,
J.
, 2006, “
Changes in Finger-Aorta Pressure Transfer Function During and After Exercise
,”
J. Appl. Physiol.
8750-7587,
101
(
4
), pp.
1207
1214
.
7.
Hope
,
S.
,
Tay
,
D.
,
Meredith
,
I.
, and
Cameron
,
J.
, 2003, “
Use of Arterial Transfer Functions for the Derivation of Aortic Waveform Characteristics
,”
J. Hypertens.
0263-6352,
21
(
7
), pp.
1299
1305
.
8.
Segers
,
P.
,
Carlier
,
S.
,
Pasquet
,
A.
,
Rabben
,
S.
,
Hellevik
,
L.
,
Remme
,
E.
,
De Backer
,
T.
,
De Sutter
,
J.
,
Thomas
,
J.
, and
Verdonck
,
V.
, 2000, “
Individualizing the Aorto-Radial Pressure Transfer Function: Feasibility of a Model-Based Approach
,”
Am. J. Physiol.
0002-9513,
279
(
2
), pp.
542
549
.
9.
Redling
,
J.
, and
Akay
,
M.
, 1997, “
Noninvasive Cardiac Output Estimation: A Preliminary Study
,”
Biol. Cybern.
0340-1200,
77
(
2
), pp.
111
122
.
10.
Welkowitz
,
W.
,
Cui
,
Q.
,
Qi
,
Y.
, and
Kostis
,
J.
, 1991, “
Noninvasive Estimation of Cardiac Output
,”
IEEE Trans. Biomed. Eng.
0018-9294,
38
(
11
), pp.
1100
1105
.
11.
Hahn
,
J. O.
,
Reisner
,
A.
, and
Asada
,
H.
, 2007, “
Identification of Multi-Channel Cardiovascular System Using Dual-Pole Laguerre Basis Functions for Assessment of Aortic Flow and TPR
,”
Proceedings of the ASME International Mechanical Engineering Congress and Exposition
, Seattle, Nov., Paper No. IMECE2007-41186.
12.
Hahn
,
J. O.
,
Reisner
,
A.
, and
Asada
,
H.
, 2007, “
Sensitivity and Variance Analysis of Arterial Pressure Transfer Dynamics Estimated From Adaptive Multi-Channel System Identification
,”
Proceedings of the American Control Conference
, Jul., New York, pp.
613
618
.
13.
Swamy
,
G.
,
Ling
,
Q.
,
Li
,
T.
, and
Mukkamala
,
R.
, 2007, “
Blind Identification of the Aortic Pressure Waveform From Multiple Peripheral Artery Pressure Waveforms
,”
Am. J. Physiol.
0002-9513,
292
(
5
), pp.
2257
2264
.
14.
Hahn
,
J. O.
,
Reisner
,
A.
, and
Asada
,
H.
, 2006, “
A Blind Approach to Reconstruction of Aortic Blood Pressure Waveform Using Gray-Box Identification of Multiple Pressure Transfer Channels
,”
Proceedings of the American Control Conference
, Minneapolis, Jun., pp.
3415
3420
.
15.
McCombie
,
D.
,
Reisner
,
A.
, and
Asada
,
H.
, 2005, “
Laguerre Model Blind System Identification: Cardiovascular Dynamics Estimated From Multiple Peripheral Circulatory Signals
,”
IEEE Trans. Biomed. Eng.
0018-9294,
52
(
11
), pp.
1889
1901
.
16.
Hahn
,
J. O.
,
McCombie
,
D.
,
Reisner
,
A.
,
Asada
,
H.
,
Hojman
,
H.
, and
Mukkamala
,
R.
, 2005, “
Adaptive Left Ventricular Ejection Time Estimation Using Multiple Peripheral Pressure Waveforms
,”
Proceedings of the IEEE Engineering in Medicine and Biology Conference
, Shanghai, China, Aug., pp.
2383
2386
.
17.
Zhang
,
Y.
, and
Asada
,
H.
, 2004, “
Blind System Identification of Noncoprime Multichannel Systems and Its Application to Noninvasive Cardiovascular Monitoring
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
126
(
4
), pp.
834
847
.
18.
Gurelli
,
M.
, and
Nikias
,
C.
, 1995, “
EVAM: An Eigenvector-Based Algorithm for Multichannel Blind Deconvolution of Input Colored Signals
,”
IEEE Trans. Signal Process.
1053-587X,
43
(
1
), pp.
134
149
.
19.
Xu
,
G.
,
Liu
,
H.
,
Tong
,
L.
, and
Kailath
,
T.
, 1995, “
A Least-Squares Approach to Blind Channel Identification
,”
IEEE Trans. Signal Process.
1053-587X,
43
(
12
), pp.
2982
2993
.
20.
Ozawa
,
E.
,
Bottom
,
K.
,
Xiao
,
X.
, and
Kamm
,
R.
, 2001, “
Numerical Simulation of Enhanced External Counterpulsation
,”
Ann. Biomed. Eng.
0090-6964,
29
(
4
), pp.
284
297
.
21.
Olufsen
,
M.
, 1999, “
Structured Tree Outflow Condition for Blood Flow in Larger Systemic Arteries
,”
Am. J. Physiol.
0002-9513,
276
(
1
), pp.
257
268
.
22.
Avolio
,
A.
, 1980, “
Multi-Branched Model of the Human Arterial System
,”
Med. Biol. Eng. Comput.
0140-0118,
18
(
6
), pp.
709
718
.
23.
Radenkovic
,
M.
,
Bose
,
T.
, and
Zhang
,
Z.
, 2003, “
Self-Tuning Blind Identification and Equalization of IIR Channels
,”
EURASIP J. Appl. Signal Process.
1110-8657,
2003
(
9
), pp.
930
937
.
24.
Doyle
,
J.
,
Francis
,
B.
, and
Tannenbaum
,
A.
, 1992,
Feedback Control Theory
,
Macmillan
,
New York
.
25.
Ljung
,
L.
, 1999,
System Identification Theory for the User
,
Prentice-Hall
,
Upper Saddle River, NJ
.
26.
Shroff
,
S.
,
Berger
,
D.
,
Korcarz
,
C.
,
Lang
,
R.
,
Marcus
,
R.
, and
Miller
,
D.
, 1995, “
Physiological Relevance of T-Tube Model Parameters With Emphasis on Arterial Compliance
,”
Am. J. Physiol.
0002-9513,
269
(
1
), pp.
365
374
.
27.
Campbell
,
K.
,
Burattini
,
R.
,
Bell
,
D.
,
Kirkpatrick
,
R.
, and
Knowlen
,
G.
, 1990, “
Time-Domain Formulation of Asymmetric T-Tube Model of Arterial System
,”
Am. J. Physiol.
0002-9513,
258
(
6
), pp.
1761
1774
.
28.
Burattini
,
R.
, and
Campbell
,
K.
, 1989, “
Modified Asymmetric T-Tube Model to Infer Arterial Wave Reflection at the Aortic Root
,”
IEEE Trans. Biomed. Eng.
0018-9294,
36
(
8
), pp.
805
814
.
29.
Kong
,
J.
, 2000,
Electromagnetic Wave Theory
,
EMW
,
Cambridge, MA
.
You do not currently have access to this content.