In this paper a new framework has been applied to the design of controllers which encompasses nonlinearity, hysteresis and arbitrary density functions of forward models and inverse controllers. Using mixture density networks, the probabilistic models of both the forward and inverse dynamics are estimated such that they are dependent on the state and the control input. The optimal control strategy is then derived which minimizes uncertainty of the closed loop system. In the absence of reliable plant models, the proposed control algorithm incorporates uncertainties in model parameters, observations, and latent processes. The local stability of the closed loop system has been established. The efficacy of the control algorithm is demonstrated on two nonlinear stochastic control examples with additive and multiplicative noise.

References

1.
Åström
,
K. J.
, and
Wittenmark
,
B.
, 1989,
Adaptive Control
,
Addison-Wesley
,
Reading, MA
.
2.
Narendra
,
K. S.
, and
Mukhopadhyay
,
S.
, 1994, “
Adaptive Control of Nonlinear Multivariable Systems Using Neural Networks
,”
Neural Networks
,
7
(
5
), pp.
737
752
.
3.
Yaz
,
E.
, 1986, “
Certainty Equivalent Control of Stochastic Systems: Stability Property
,”
IEEE Trans. Autom. Control
,
31
, pp.
178
180
.
4.
Herzallah
,
R.
, and
Lowe
,
D.
, 2008, “
A Bayesian Perspective on Stochastic Neuro Control
,”
IEEE Trans. Neural Netw.
,
19
(
5
), pp.
914
924
.
5.
Herzallah
,
R.
, 2007, “
Adaptive Critic Methods for Stochastic Systems With Input-Dependent Noise
,”
Automatica
,
43
(
8
), pp.
1355
1362
.
6.
Bishop
,
C. M.
, 1995,
Neural Networks for Pattern Recognition
,
Oxford University
,
New York
.
7.
Herzallah
,
R.
, and
Lowe
,
D.
, 2004, “
A Mixture Density Network Approach to Modelling and Exploiting Uncertainty in Nonlinear Control Problems
,”
Eng. Applic. Artif. Intell.
,
17
, pp.
145
158
.
8.
Evans
,
D. J.
,
Nabney
,
I. T.
, and
Cornford
,
D.
, 2000, “
Structured Neural Network Modelling of Multi-Valued Functions for Wind Vector Retrieval From Satellite Scatterometer Measurements
,”
Neurocomputing
,
30
, pp.
23
30
.
9.
Richmond
,
K.
,
King
,
S.
, and
Taylor
,
P.
, 2003, “
Modelling the Uncertainty in Recovering Articulation From Acoustics
,”
Comput. Speech Lang.
,
17
, pp.
153
172
.
10.
Herzallah
,
R.
, and
Lowe
,
D.
, 2003, “
Multi-Valued Control Problems and Mixture Density Network
,”
IFAC International Conference on Intelligent Control Systems and Signal Processing
, ICONS, Vol.
2
, pp.
387
392
.
11.
Hayakawa
,
T.
,
Ishii
,
H.
, and
Tsumura
,
K.
, 2009, “
Adaptive Quantized Control for Nonlinear Uncertain Systems
,”
Syst. Control Lett.
,
58
, pp.
625
632
.
12.
Pin
,
G.
,
Raimondo
,
D. M.
,
Magni
,
L.
, and
Parisini
,
T.
, 2009, “
Robust Model Predictive Control of Nonlinear Systems With Bounded and State-Dependent Uncertainties
,”
IEEE Trans. Autom. Control
,
54
, pp.
1681
1687
.
13.
Primbs
,
J. A.
, and
Sung
,
C. H.
, 2009, “
Stochastic Receding Horizon Control of Constrained Linear Systems With State and Control Multiplicative Noise
,”
IEEE Trans. Autom. Control
,
54
, pp.
221
230
.
14.
Mirkin
,
B.
, and
Gutman
,
P. O.
, 2008, “
Robust Output-Feedback Model Reference Adaptive Control of SISO Plants With Multiple Uncertain, Time-Varying State Delays
,”
IEEE Trans. Autom. Control
,
53
, pp.
2414
2419
.
15.
Petersen
,
I. R.
, 2008, “
A Kalman Decomposition for Robustly Unobservable Uncertain Linear Systems
,”
Syst. Control Lett.
,
57
, pp.
800
804
.
16.
Zhang
,
Z.
, and
Serrani
,
A.
, 2009, “
Adaptive Robust Output Regulation of Uncertain Linear Periodic Systems
,”
IEEE Trans. Autom. Control
,
54
, pp.
266
278
.
17.
Yue
,
H.
, and
Wang
,
H.
, 2003, “
Minimum Entropy control of closed—loop tracking errors for dynamic stochastic systems
,”
IEEE Trans. Autom. Control
,
48
, pp.
118
122
.
18.
Kravchenko
,
A. N.
, 2009, “
Neural Network Method to Solve Inverse Problems for Canopy Radiative Transfer Models
,”
Cybern. Syst. Anal.
,
45
, pp.
477
503
.
19.
White
,
D. A.
, and
Sofge
,
D.
, eds., 1992,
Handbook of Intelligent Control
,
Multiscience Press, Inc.
,
New York
.
20.
Molina - Vilaplana
,
J.
,
Pedreno - Molina
,
J. L.
, and
López - Coronado
,
J.
, 2004, “
Hyper RBF Model for Accurate Reaching in Redundant Robotic Systems
,”
Neurocomputing
,
61
, pp.
495
501
.
21.
Ren
,
B.
,
Ge
,
S. S.
,
Lee
,
T. H.
, and
Su
,
C.-Y.
, 2009, “
Adaptive Neural Control for a Class of Nonlinear Systems With Uncertain Hysteresis Inputs and Time-Varying State Delays
,”
IEEE Trans. Autom. Control
,
20
(
7
), pp.
1148
1164
.
22.
Ikhouane
,
F.
, and
Gomis - Bellmunt
,
O.
, 2008, “
A Limit Cycle Approach for the Parametric Identification of Hysteretic Systems
,”
Syst. Control Lett.
,
57
, pp.
663
669
.
23.
Singla
,
P.
,
Subbarao
,
K.
, and
Junkins
,
J. L.
, 2007, “
Direction—Dependent Learning Approach for Radial Basis Function Networks
,”
IEEE Trans. Neural Networks
,
18
(
1
), pp.
203
222
.
You do not currently have access to this content.