Abstract

Battery management systems (BMSs), which monitor and optimize performance while ensuring safety, require control-oriented models, i.e., models tailored to the design and implementation of estimation and control algorithms. Physics-based electrochemical models describe detailed battery phenomena, but are too computationally intensive for use in estimation and control applications. Single particle models (SPMs), which retain some of the physics of electrochemical models, are often used for control-oriented battery modeling since they are computationally efficient; however, they are only valid over very low frequency ranges and C-rates. Empirical equivalent circuit models (ECMs) are also used for control-oriented battery modeling since they are computationally efficient and can describe battery behavior over wide frequency ranges; however, they provide no physical understanding of the battery and, therefore, have limited applicability. Further, fractional order terms (e.g., Warburg impedances) are often employed, making the models unwieldy for use in the time domain. This work provides a control-oriented battery model that combines the benefits of SPM and ECM models, while overcoming their limitations. The proposed model incorporates some of the battery physics found in electrochemical models, can easily be used in both the time and frequency domains, and describes battery behavior over its entire frequency range. A linearized single particle model, which incorporates key electrochemical parameters, is used for modeling battery physics at very low frequencies. For low frequencies, integer-order linear systems are used to approximate diffusion physics described by Warburg impedances, and high frequency behavior is modeled by the double layer capacitance effect. The proposed battery model is more computationally efficient than full electrochemical models since it does not require the solution of PDEs, is accurate for a wider frequency range than the SPM considered in this paper, and does not suffer from the unwieldiness and limited applicability of empirical ECMs. The model is validated in the time and frequency domains via a comparison to pseudo-two-dimensional (P2D) model simulations and experimental data.

References

1.
Doyle
,
M.
,
Fuller
,
T. F.
, and
Newman
,
J.
,
2019
, “
Modeling of Galvanostatic Charge and Discharge of the Lithium/Polymer/Insertion Cell
,”
J. Electrochem. Soc.
,
140
(
6
), pp.
1526
1533
.10.1149/1.2221597
2.
Doyle
,
M.
,
Meyers
,
J. P.
, and
Newman
,
J.
, “
Computer Simulations of the Impedance Response of Lithium Rechargeable Batteries
,”
J. Electrochem. Soc.
,
147
(
1
), pp.
99
110
.
2000
,10.1149/1.1393162
3.
Murbach
,
M. D.
, and
Schwartz
,
D. T.
,
2017
, “
Extending Newman's Pseudo-Two-Dimensional Lithium-Ion Battery Impedance Simulation Approach to Include the Nonlinear Harmonic Response
,”
J. Electrochem. Soc.
,
164
(
11
), pp.
E3311
E3320
.10.1149/2.0301711jes
4.
Lotfi
,
N.
,
Landers
,
R. G.
,
Li
,
J.
, and
Park
,
J.
,
2015
, “
Electrochemical Model-Based Adaptive Estimation of Li-Ion Battery State of Charge
,”
ASME
Paper No. DSCC2015-9918.10.1115/DSCC2015-9918
5.
Subramanian
,
V. R.
,
Diwakar
,
V. D.
, and
Tapriyal
,
D.
,
2005
, “
Efficient Macro-Micro Scale Coupled Modeling of Batteries
,”
J. Electrochem. Soc.
,
152
(
10
), pp.
A2002
A2008
.10.1149/1.2032427
6.
Lotfi
,
N.
,
Landers
,
R. G.
,
Li
,
J.
, and
Park
,
J.
,
2017
, “
Reduced-Order Electrochemical Model-Based SOC Observer With Output Model Uncertainty Estimation
,”
IEEE Trans. Control Syst. Technol.
,
25
(
4
), pp.
1217
1230
.10.1109/TCST.2016.2598764
7.
Lotfi
,
N.
,
Li
,
J.
,
Landers
,
R. G.
, and
Park
,
J.
,
2017
, “
Li-Ion Battery State of Health Estimation Based on an Improved Single Particle Model
,”
American Control Conference
,
Seattle, WA
, May 24–26, pp.
86
91
.
8.
Moura
,
S. J.
,
Argomedo
,
F. B.
,
Klein
,
R.
,
Mirtabatabaei
,
A.
, and
Krstic
,
M.
,
2017
, “
Battery State Estimation for a Single Particle Model With Electrolyte Dynamics
,”
IEEE Trans. Control Syst. Technol.
,
25
(
2
), pp.
453
468
.10.1109/TCST.2016.2571663
9.
Rahimian
,
S. K.
,
Rayman
,
S.
, and
White
,
R. E.
,
2013
, “
Extension of Physics-Based Single Particle Model for Higher Charge-Discharge Rates
,”
J. Power Sources
,
224
, pp.
180
194
.10.1016/j.jpowsour.2012.09.084
10.
Xiong
,
R.
,
Li
,
L.
, and
Yu
,
Q.
,
2019
, “
Improved Single Particle Model Based State of Charge and Capacity Monitoring of Lithium-Ion Batteries
,”
IEEE Vehicular Technology Conference
,
Kuala Lumpur, Malaysia
, Apr. 28–May 1, pp.
1
5
.10.1109/VTCSpring.2019.8746690
11.
Li
,
J.
,
Lotfi
,
N.
,
Landers
,
R. G.
, and
Park
,
J.
,
2017
, “
A Single Particle Model for Lithium-Ion Batteries With Electrolyte and Stress-Enhanced Diffusion Physics
,”
J. Electrochem. Soc.
,
164
(
4
), pp.
A874
A883
.10.1149/2.1541704jes
12.
Luo
,
W.
,
Lyu
,
C.
,
Wang
,
L.
, and
Zhang
,
L.
,
2013
, “
A New Extension of Physics-Based Single Particle Model for Higher Charge-Discharge Rates
,”
J. Power Sources
,
241
, pp.
295
310
.10.1016/j.jpowsour.2013.04.129
13.
Tanim
,
T. R.
,
Rahn
,
C. D.
, and
Wang
,
C.-Y.
,
2015
, “
State of Charge Estimation of a Lithium Ion Cell Based on a Temperature Dependent and Electrolyte Enhanced Single Particle Model
,”
Energy
,
80
, pp.
731
739
.10.1016/j.energy.2014.12.031
14.
Perez
,
H. E.
,
Hu
,
X.
, and
Moura
,
S. J.
,
2016
, “
Optimal Charging of Batteries Via a Single Particle Model With Electrolyte and Thermal Dynamics
,”
American Control Conference
, July 6–8, pp.
4000
4005
.10.1109/ACC.2016.7525538
15.
Raistrick
,
I. D.
,
Franceschetti
,
D. R.
, and
Macdonald
,
J. R.
,
2005
,
Impedance Spectroscopy Theory, Experiment, and Applications
, 2nd ed.,
E.
Barsoukov
, and
J. R.
Macdonald
, eds.,
Wiley
, Hoboken, NJ, pp.
81
95
.
16.
Yuan
,
X.-Z.
,
Song
,
C.
,
Wang
,
H.
, and
Zhang
,
J.
,
2010
,
Electrochemical Impedance Spectroscopy in PEM Fuel Cells
,
Springer
, New York, pp.
139
179
.
17.
Mohamedi
,
M.
,
Takahashi
,
D.
,
Uchiyama
,
T.
,
Itoh
,
T.
,
Nishizawa
,
M.
, and
Uchida
,
I.
,
2001
, “
Explicit Analysis of Impedance Spectra Related to Thin Films of Spinel LiMn2O4
,”
J. Power Sources
,
93
(
1–2
), pp.
93
103
.10.1016/S0378-7753(00)00551-6
18.
Chang
,
B.-Y.
, and
Park
,
S.-M.
,
2010
, “
Electrochemical Impedance Spectroscopy
,”
Annu. Rev. Anal. Chem.
,
3
(
1
), pp.
207
229
.10.1146/annurev.anchem.012809.102211
19.
Macdonald
,
D. D.
,
2006
, “
Reflections on the History of Electrochemical Impedance Spectroscopy
,”
Electrochim. Acta
,
51
(
8–9
), pp.
1376
1388
.10.1016/j.electacta.2005.02.107
20.
Park
,
S.-M.
, and
Yoo
,
J.-S.
,
2003
, “
Electrochemical Impedance Spectroscopy for Better Electrochemical Measurements
,”
Anal. Chem.
,
75
(
21
), pp.
455
A–
461A
.10.1021/ac0313973
21.
Dokko
,
K.
,
Mohamedi
,
M.
,
Fujita
,
Y.
,
Itoh
,
T.
,
Nishizawa
,
M.
,
Umeda
,
M.
, and
Uchida
,
I.
,
2001
, “
Kinetic Characterization of Single Particles of LiCoO2 by AC Impedance and Potential Step Methods
,”
J. Electrochem. Soc.
,
148
(
5
), pp.
A422
A426
.10.1149/1.1359197
22.
Gabano
,
J.-D.
,
Poinot
,
T.
, and
Huard
,
B.
,
2017
, “
Bounded Diffusion Impedance Characterization of Battery Electrodes Using Fractional Modeling
,”
Commun. Nonlinear Sci. Numer. Simul.
,
47
, pp.
164
177
.10.1016/j.cnsns.2016.11.016
23.
Hu
,
X.
,
Li
,
S.
, and
Peng
,
H.
,
2012
, “
A Comparitive Study of Equivalent Circuit Models for Li-Ion Batteries
,”
J. Power Sources
,
198
, pp.
359
367
.10.1016/j.jpowsour.2011.10.013
24.
Zhang
,
L. L.
, and
Zhao
,
X. S.
,
2009
, “
Carbon-Based Materials as Supercapacitor Electrodes
,”
Chem. Soc. Rev.
,
38
(
9
), pp.
2520
2531
.10.1039/b813846j
25.
Landesfeind
,
J.
,
Pritzl
,
D.
, and
Gasteiger
,
H. A.
,
2017
, “
An Analysis Protocol for Three-Electrode Li-Ion Battery Impedance Spectra: Part I. Analysis of a High-Voltage Positive Electrode
,”
J. Electrochem. Soc.
,
164
(
7
), pp.
A1773
A1783
.10.1149/2.0131709jes
26.
Levi
,
M. D.
, and
Aurbach
,
D.
,
2004
, “
Impedance of a Single Intercalation Particle and of Non-Homogeneous, Multilayered Porous Composite Electrodes for Li-Ion Batteries
,”
J. Phys. Chem. A
,
108
(
31
), pp.
11693
11703
.10.1021/jp0486402
27.
Randles
,
J. E. B.
,
1947
, “
Kinetics of Rapid Electrode Reactions
,”
Discuss. Faraday Soc.
,
1
, pp.
11
19
.10.1039/df9470100011
28.
Prasad
,
G. K.
, and
Rahn
,
C. D.
,
2012
, “
Development of a First Principles Equivalent Circuit Model for a Lithium Ion Battery
,”
ASME Paper No. DSCC2012-MOVIC2012-8607.
29.
Prasad
,
G. K.
, and
Rahn
,
C. D.
,
2013
, “
Model Based Identification of Aging Parameters in Lithium Ion Batteries
,”
J. Power Sources
,
232
, pp.
79
85
.10.1016/j.jpowsour.2013.01.041
30.
Tsirimokou
,
G.
,
Psychalinos
,
C.
, and
Elwakil
,
A.
,
2017
,
Design of CMOS Analog Integrated Fractional-Order Circuits: Applications in Medicine and Biology
,
Springer
, New York, pp.
3
38
.
31.
Vinagre
,
B. M.
,
Podlubny
,
I.
,
Hernandez
,
A.
, and
Feliu
,
V.
,
2000
, “
Some Approximations of Fractional Order Operators Used in Control Theory and Applications
,”
Fractional Calculus Appl. Anal.
,
3
, pp.
945
950
.https://www.researchgate.net/publication/228392562_Some_approximations_of_fractional_order_operators_used_in_control_theory
32.
Chen
,
Y.
,
Vinagre
,
B. M.
, and
Podlubny
,
I.
,
2004
, “
Continued Fraction Expansion Approaches to Discretizing Fractional Order Derivatives - an Expository Review
,”
Nonlinear Dyn.
,
38
(
1–4
), pp.
155
170
.10.1007/s11071-004-3752-x
33.
Maundy
,
B.
,
Elwakil
,
A. S.
, and
Freeborn
,
T. J.
,
2011
, “
On the Practical Realization of Higher-Order Filters With Fractional Stepping
,”
Signal Process.
,
91
(
3
), pp.
484
491
.10.1016/j.sigpro.2010.06.018
34.
Lorentzen
,
L.
, and
Waadeland
,
H.
,
2008
, “
Continued Fractions
,”
Convergence Theory
, 2nd ed.,
C. K.
Chui
, (ed.), Vol.
1
,
Atlantic Press/World Scientific
, Singapore.
35.
Wang
,
J. C.
, “
Realizations of Generalized Warburg Impedance With RC Ladder Networks and Transmission Lines
,”
J. Electrochem. Soc.
,
134
(
8
), pp.
1915
1920
.
2019
,10.1149/1.2100789
36.
Zou
,
Y.
,
Li
,
S. E.
,
Shao
,
B.
, and
Wang
,
B.
,
2016
, “
State-Space Model With Non-Integer Order Derivatives for Lithium-Ion Battery
,”
Appl. Energy
,
161
, pp.
330
336
.10.1016/j.apenergy.2015.10.025
You do not currently have access to this content.