Abstract

This paper considers an integrated control method combining autonomous driving and active steering. By using artificial flow guidance (AFG), the steering at all five axles on a tractor–semitrailer are synchronized for precise low-speed path tracking and improved lateral stability. AFG is a motion planning method which uses velocity vectors to guide the motion of the vehicle; here, two modification on AFG are proposed to form the integrated-AFG which improves the transient performance and generalizes the choice of the tracking points. Simulations rendered in TruckMaker show submillimeter level steady-state off-tracking for a broad speed range, with maximum deviation being 1 cm for a high-speed lane change; amplification of trailer lateral motion is also suppressed, with rearward amplification (RWA) < 1 maintained throughout. This control method is robust to changes in key parameters such as trailer mass and road friction coefficient. The methods presented provide a new foundation for implementing automated freight transportation on highways.

References

1.
Department for Transport
,
2021
, “Road Freight Statistics, Table rfs0109,” Department for Transport, UK, Report No. RFS0109.
2.
Odhams
,
A.
,
Roebuck
,
R.
,
Jujnovich
,
B.
, and
Cebon
,
D.
,
2011
, “
Active Steering of a Tractor–Semi-Trailer
,”
Proc. Inst. Mech. Eng., Part D
,
225
(
7
), pp.
847
869
.10.1177/0954407010395680
3.
Evgenikos
,
P.
,
Yannis
,
G.
,
Folla
,
K.
,
Bauer
,
R.
,
Machata
,
K.
, and
Brandstaetter
,
C.
,
2016
, “
Characteristics and Causes of Heavy Goods Vehicles and Buses Accidents in Europe
,”
Transp. Res. Procedia
,
14
, pp.
2158
2167
.10.1016/j.trpro.2016.05.231
4.
Jujnovich
,
B.
, and
Cebon
,
D.
,
2013
, “
Path-Following Steering Control for Articulated Vehicles
,”
ASME J. Dyn. Syst., Meas., Control
,
135
(
3
), p.
031006
.10.1115/1.4023396
5.
Notsu
,
I.
,
Takahashi
,
S.
, and
Watanabe
,
Y.
,
1991
, “
Investigation Into Turning Behavior of Semi-Trailer With Additional Trailer-Wheel Steering—A Control Method for Trailer-Wheel Steering to Minimize Trailer Rear-Overhang Swing in Short Turns
,”
SAE
Technical Paper No. 912570. 10.4271/912570
6.
Lee
,
S.-H.
,
Park
,
T.-W.
,
Moon
,
K.-H.
,
Choi
,
S.-H.
, and
Jun
,
K.-J.
,
2009
, “
The Articulated Vehicle Dynamic Analysis Using the AWS (All Wheel Steering) ECU (Electronic Control Unit) Test
,”
J. Mech. Sci. Technol.
,
23
(
4
), pp.
923
926
.10.1007/s12206-009-0313-8
7.
Oreh
,
S. T.
,
Kazemi
,
R.
, and
Azadi
,
S.
,
2012
, “
A New Desired Articulation Angle for Directional Control of Articulated Vehicles
,”
Proc. Inst. Mech. Eng., Part K
,
226
(
4
), pp.
298
314
.10.1177/1464419312445426
8.
Jujnovich
,
B.
,
Roebuck
,
R.
,
Odhams
,
A.
, and
David
,
C.
,
2008
, “
Implementation of Active Rear Steering of a Tractor Semi Trailer
,”
Proceedings of the 10th International Symposium on Heavy Vehicle Transport Technology
,
Paris, France
, pp.
358
367
.
9.
Esmaeili
,
N.
,
Kazemi
,
R.
, and
Tabatabaei Oreh
,
S. H.
,
2019
, “
An Adaptive Sliding Mode Controller for the Lateral Control of Articulated Long Vehicles
,”
Proc. Inst. Mech. Eng., Part K
,
233
(
3
), pp.
487
515
.10.1177/1464419318806801
10.
Rangavajhula
,
K.
, and
Tsao
,
H.-S. J.
,
2007
, “
Active Trailer Steering Control of an Articulated System With a Tractor and Three Full Trailers for Tractor-Track Following
,”
Int. J. Heavy Veh. Syst.
,
14
(
3
), pp.
271
293
.10.1504/IJHVS.2007.015604
11.
Rangavajhula
,
K.
, and
Tsao
,
H. J.
,
2008
, “
Command Steering of Trailers and Command-Steering-Based Optimal Control of an Articulated System for Tractor-Track Following
,”
Proc. Inst. Mech. Eng., Part D
,
222
(
6
), pp.
935
954
.10.1243/09544070JAUTO501
12.
He
,
Y.
,
Islam
,
M. M.
, and
Webster
,
T. D.
,
2010
, “
An Integrated Design Method for Articulated Heavy Vehicles With Active Trailer Steering Systems
,”
SAE
Paper No. 2010-01-0092.10.4271/2010-01-0092
13.
Islam
,
M. M.
,
Ding
,
X.
, and
He
,
Y.
,
2012
, “
A Closed-Loop Dynamic Simulation-Based Design Method for Articulated Heavy Vehicles With Active Trailer Steering Systems
,”
Veh. Syst. Dyn.
,
50
(
5
), pp.
675
697
.10.1080/00423114.2011.622904
14.
He
,
Y.
, and
Islam
,
M. M.
,
2012
, “
An Automated Design Method for Active Trailer Steering Systems of Articulated Heavy Vehicles
,”
ASME J. Mech. Des.
,
134
(
4
), p.
041002
.10.1115/1.4006047
15.
Roebuck
,
R.
,
Odhams
,
A.
,
Tagesson
,
K.
,
Cheng
,
C.
, and
Cebon
,
D.
,
2014
, “
Implementation of Trailer Steering Control on a Multi-Unit Vehicle at High Speeds
,”
ASME J. Dyn. Syst., Meas., Control
,
136
(
2
), p.
021016
.10.1115/1.4025815
16.
Zhu
,
S.
,
He
,
Y.
, and
Ren
,
J.
,
2019
, “
On Robust Controllers for Active Steering Systems of Articulated Heavy Vehicles
,”
Int. J. Heavy Veh. Syst.
,
26
(
1
), pp.
1
30
.10.1504/IJHVS.2019.097108
17.
Coulter
,
R. C.
,
1992
, “
Implementation of the Pure Pursuit Path Tracking Algorithm
,” Robotics Institute, Carnegie-Mellon University, Pittsburgh, PA, Technical Report No. CMU-RI-TR-92-01.
18.
Radisavljevic-Gajic
,
V.
,
2023
, “
Control of Autonomous Vehicles Via Multi-Stage Linear Feedback Design
,”
ASME J. Dyn. Syst., Meas., Control
,
145
(
4
), p.
041004
.10.1115/1.4056781
19.
Galluppi
,
O.
,
Formentin
,
S.
,
Savaresi
,
S. M.
, and
Novara
,
C.
,
2019
, “
Multivariable Nonlinear Data-Driven Control With Application to Autonomous Vehicle Lateral Dynamics
,”
ASME J. Dyn. Syst., Meas., Control
,
141
(
10
), p.
101012
.10.1115/1.4043926
20.
Hellewell
,
J. S.
,
Popov
,
A. A.
, and
Burnett
,
G. E.
,
2020
, “
Hierarchical Control for Trajectory Generation and Tracking Via Active Front Steering
,”
ASME J. Dyn. Syst., Meas., Control
,
142
(
1
), p.
011002
.10.1115/1.4044620
21.
Raffo
,
G. V.
,
Gomes
,
G. K.
,
Normey-Rico
,
J. E.
,
Kelber
,
C. R.
, and
Becker
,
L. B.
,
2009
, “
A Predictive Controller for Autonomous Vehicle Path Tracking
,”
IEEE Trans. Intell. Transp. Syst.
,
10
(
1
), pp.
92
102
.10.1109/TITS.2008.2011697
22.
Abroshan
,
M.
,
Taiebat
,
M.
,
Goodarzi
,
A.
, and
Khajepour
,
A.
,
2017
, “
Automatic Steering Control in Tractor Semi-Trailer Vehicles for Low-Speed Maneuverability Enhancement
,”
Proc. Inst. Mech. Eng., Part K
,
231
(
1
), pp.
83
102
.10.1177/1464419316651375
23.
Wang
,
B.
,
Zha
,
H.
,
Zhong
,
G.
,
Li
,
Q.
, and
Wang
,
X.
,
2020
, “
Integrated Active Steering Control Strategy for Autonomous Articulated Vehicles
,”
Int. J. Heavy Veh. Syst.
,
27
(
5
), pp.
565
599
.10.1504/IJHVS.2020.111262
24.
Rahman
,
S.
,
Gordon
,
T.
,
Liu
,
Q.
,
Gao
,
Y.
,
Henderson
,
L.
, and
Laine
,
L.
,
2022
, “
Improved Lateral Performance of a Long Combination Vehicle Based on Artificial Flow Guidance
,” Proceedings of
the IAVSD International Symposium on Dynamics of Vehicles on Roads and Tracks
, St. Petersburg, Russia, Aug. 17–19, pp.
726
735
.
25.
Gordon
,
T.
,
Best
,
M. C.
, and
Dixon
,
P.
,
2002
, “
An Automated Driver Based on Convergent Vector Fields
,”
Proc. Inst. Mech. Eng., Part D
,
216
(
4
), pp.
329
347
.10.1243/0954407021529156
26.
Gordon
,
T.
, and
Best
,
M. C.
,
2006
, “
On the Synthesis of Driver Inputs for the Simulation of Closed-Loop Handling Manoeuvres
,”
Int. J. Veh. Des.
,
40
(
1–3
), pp.
52
76
.10.1504/IJVD.2006.008453
27.
Liu
,
Q.
,
Gordon
,
T.
, and
Rahman
,
S.
,
2023
, “
Model-Free Autonomous Control of Four-Wheel Steering Using Artificial Flow Guidance
,”
Veh. Syst. Dyn.
, pp.
1
22
.10.1080/00423114.2023.2276761
28.
Gao
,
Y.
,
Gordon
,
T.
,
Rahman
,
S.
, and
Henderson
,
L.
,
2022
, “An Adaptive Path Following Algorithm for Heavy-Duty Vehicles,”
World Intellectual Property Organisation
, European Patent.
29.
IPG Automotive
, “
Truckmaker
,” IPG Automotive, accessed June 7,
2022
, https://ipg-automotive.com/en/products-solutions/software/truckmaker/
You do not currently have access to this content.