Abstract

The continuous-time algebraic Riccati equation (ARE) is often utilized in control, estimation, and optimization. For a linear system with a second-order structure of size n, the ARE required to be solved to get the control values in standard control problems results in complex subequations in terms of the second-order system matrices. The computational costs of solving the algebraic Riccati equation through standard methods such as the Hamiltonian matrix pencil approach increase substantially as matrix sizes increase for a second-order system, due to the eigendecomposition of the 2n×2n system matrices involved. This work introduces a new solution that does not require the eigendecomposition of the 2n×2n system matrices, while satisfying all of the requirements of the solution to the Riccati equation (e.g., detectability, stabilizability, and positive semidefinite solution matrix).

References

1.
Chu
,
E. K.
, and
Datta
,
B. N.
,
1996
, “
Numerically Robust Pole Assignment for Second-Order Systems
,”
Int. J. Control
,
64
(
6
), pp.
1113
1127
.10.1080/00207179608921677
2.
Greenwood
,
D. T.
,
1988
,
Principles of Dynamics
, Vol.
21
,
Prentice Hall
,
Englewood Cliffs, NJ
.
3.
Udwadia
,
F. E.
,
Wanichanon
,
T.
, and
Cho
,
H.
,
2014
, “
Methodology for Satellite Formation-Keeping in the Presence of System Uncertainties
,”
J. Guid., Control, Dyn.
,
37
(
5
), pp.
1611
1624
.10.2514/1.G000317
4.
Ma
,
F.
, and
Caughey
,
T. K.
,
1995
, “
Analysis of Linear Nonconservative Vibrations
,”
ASME J. Appl. Mech.
,
62
(
3
), pp.
685
691
.10.1115/1.2896001
5.
Sultan
,
C.
,
2022
, “
Decoupling of Second Order Systems Via Linear Time Invariant Transformations
,”
Mech. Syst. Signal Process.
,
169
, p.
108295
.10.1016/j.ymssp.2021.108295
6.
Udwadia
,
F. E.
,
2018
, “
Stability of Gyroscopic Circulatory Systems
,”
ASME J. Appl. Mech.
,
86
(
2
), p.
021002
.10.1115/1.4041825
7.
Udwadia
,
F. E.
,
2020
, “
Does the Addition of Linear Damping Always Cause Instability in a Gyroscopically Stabilized System?
,”
AIAA J.
,
58
(
1
), pp.
372
384
.10.2514/1.J058418
8.
Hughes
,
P. C.
, and
Skelton
,
R. E.
,
1980
, “
Controllability and Observability of Linear Matrix-Second-Order Systems
,”
ASME J. Appl. Mech.
,
47
(
2
), pp.
415
420
.10.1115/1.3153679
9.
Laub
,
A.
, and
Arnold
,
W.
,
1984
, “
Controllability and Observability Criteria for Multivariable Linear Second-Order Models
,”
IEEE Trans. Autom. Control
,
29
(
2
), pp.
163
165
.10.1109/TAC.1984.1103470
10.
Duan
,
G.-R.
, and
Liu
,
G.-P.
,
2002
, “
Complete Parametric Approach for Eigenstructure Assignment in a Class of Second-Order Linear Systems
,”
Automatica
,
38
(
4
), pp.
725
729
.10.1016/S0005-1098(01)00251-5
11.
Chan
,
H. C.
,
Lam
,
J.
, and
Ho
,
D. W. C.
,
1997
, “
Robust Eigenvalue Assignment in Second-Order Systems: A Gradient Flow Approach
,”
Optim. Control Appl. Methods
,
18
(
4
), pp.
283
296
.10.1002/(SICI)1099-1514(199707/08)18:4<283::AID-OCA603>3.0.CO;2-Q
12.
Skelton
,
R. E.
, and
Hughes
,
P. C.
,
1980
, “
Modal Cost Analysis for Linear Matrix-Second-Order Systems
,”
ASME J. Dyn. Syst., Meas., Control
,
102
(
3
), pp.
151
158
.10.1115/1.3139625
13.
Kim
,
Y.
,
Kim
,
H.-S.
, and
Junkins
,
J. L.
,
1999
, “
Eigenstructure Assignment Algorithm for Mechanical Second-Order Systems
,”
J. Guid., Control, Dyn.
,
22
(
5
), pp.
729
731
.10.2514/2.4444
14.
Reyhanoglu
,
M.
,
van der Schaft
,
A.
,
Mcclamroch
,
N.
, and
Kolmanovsky
,
I.
,
1999
, “
Dynamics and Control of a Class of Underactuated Mechanical Systems
,”
IEEE Trans. Autom. Control
,
44
(
9
), pp.
1663
1671
.10.1109/9.788533
15.
Li
,
Z.
,
Zhang
,
T.
, and
Xie
,
G.
,
2016
, “
LQR-Based Optimal Leader-Follower Consensus of Second-Order Multi-Agent Systems
,”
Proceedings of the 2015 Chinese Intelligent Systems Conference
,
Y.
Jia
,
J.
Du
,
H.
Li
, and
W.
Zhang
, eds.,
Springer Berlin Heidelberg
,
Berlin, Heidelberg
, pp.
353
361
.
16.
Vinodh Kumar
,
E.
, and
Jerome
,
J.
,
2013
, “
Robust LQR Controller Design for Stabilizing and Trajectory Tracking of Inverted Pendulum
,”
Procedia Eng.
,
64
, pp.
169
178
.10.1016/j.proeng.2013.09.088
17.
Li
,
W.
, and
Todorov
,
E.
,
2004
, “
Iterative Linear Quadratic Regulator Design for Nonlinear Biological Movement Systems
,”
ICINCO
, Vol.
1
,
Citeseer
,
Setubal, Portugal
, pp.
222
229
.
18.
Yang
,
Y.
,
2012
, “
Analytic LQR Design for Spacecraft Control System Based on Quaternion Model
,”
J. Aerosp. Eng.
,
25
(
3
), pp.
448
453
.10.1061/(ASCE)AS.1943-5525.0000142
19.
Kim
,
Y.
,
Kum
,
D.
,
Nam
,
C.
,
Kim
,
Y.
,
Kum
,
D.
, and
Nam
,
C.
,
1997
, “
Simultaneous Structural/Control Optimum Design of Composite Plate With Piezoelectric Actuators
,”
J. Guid. Control Dyn.
, 20(6), pp.
1111
1117
.10.2514/2.4193
20.
Hanks
,
B.
, and
Skelton
,
R.
, 1991, Closed-Form Solutions for Linear Regulator-Design of Mechanical Systems Including Optimal Weighting Matrix Selection,
AIAA
Paper No. 1991–1117.10.2514/6.1991-1117
21.
Belvin
,
W. K.
, and
Park
,
K. C.
,
1990
, “
Structural Tailoring and Feedback Control Synthesis—An Interdisciplinary Approach
,”
J. Guid., Control, Dyn.
,
13
(
3
), pp.
424
429
.10.2514/3.25354
22.
Koujitani
,
K.
,
Ikeda
,
M.
, and
Kida
,
T.
,
1989
, “
Optimal Control of Large Space Structures by Collocated Feedback
,”
Trans. Soc. Instrum. Control Eng.
,
25
(
8
), pp.
882
888
.10.9746/sicetr1965.25.882
23.
Yipaer
,
F.
, and
Sultan
,
C.
,
2013
, “
Modern Control Design for a Membrane With Bimorph Actuators
,”
AIAA
Paper No. 2013-1948.10.2514/6.2013-1948
24.
Skelton
,
R. E.
,
1988
,
Dynamic Systems Control: Linear Systems Analysis and Synthesis
,
Wiley
,
New York
.
25.
Anderson
,
B.
, and
Moore
,
J.
,
2007
,
Optimal Control: Linear Quadratic Methods
,
Dover Books on Engineering, Dover Publications
,
Mineola, NY
.
26.
Ferhat
,
I.
, and
Sultan
,
C.
,
2015
, “
System Analysis and Control Design for a Membrane With Bimorph Actuators
,”
AIAA J.
,
53
(
8
), pp.
2110
2120
.10.2514/1.J053438
27.
Arnold
,
W.
, and
Laub
,
A.
,
1984
, “
Generalized Eigenproblem Algorithms and Software for Algebraic Riccati Equations
,”
Proc. IEEE
,
72
(
12
), pp.
1746
1754
.10.1109/PROC.1984.13083
28.
Ionescu
,
V.
, and
Weiss
,
M.
,
1993
, “
The Constrained Continuous Time Algebraic Riccati Equation
,”
IFAC Proc. Vol.
,
26
(
2
), pp.
809
812
.10.1016/S1474-6670(17)49242-1
29.
Bernstein
,
D.
,
2009
,
Matrix Mathematics: Theory, Facts, and Formulas
, 2nd ed.,
Princeton Reference, Princeton University Press
,
Princeton, NJ
.
30.
Odelga
,
M.
,
Stegagno
,
P.
, and
Bülthoff
,
H. H.
,
2016
, “
A Fully Actuated Quadrotor UAV With a Propeller Tilting Mechanism: Modeling and Control
,”
2016 IEEE International Conference on Advanced Intelligent Mechatronics
(
AIM
), Banff, AB, Canada, July 12–15, pp.
306
311
.10.1109/AIM.2016.7576784
31.
Hu
,
C.
,
Wang
,
R.
,
Yan
,
F.
,
Chadli
,
M.
,
Huang
,
Y.
, and
Wang
,
H.
,
2018
, “
Robust Path-Following Control for a Fully Actuated Marine Surface Vessel With Composite Nonlinear Feedback
,”
Trans. Inst. Meas. Control
,
40
(
12
), pp.
3477
3488
.10.1177/0142331217727049
32.
Martin
,
S. C.
, and
Whitcomb
,
L. L.
,
2016
, “
Fully Actuated Model-Based Control With Six-Degree-of-Freedom Coupled Dynamical Plant Models for Underwater Vehicles: Theory and Experimental Evaluation
,”
Int. J. Rob. Res.
,
35
(
10
), pp.
1164
1184
.10.1177/0278364915620032
33.
Ribeiro
,
I. M.
, and
Simões
,
M. d. L. d. O.
,
2016
, “
The Fully Actuated Traffic Control Problem Solved by Global Optimization and Complementarity
,”
Eng. Optim.
,
48
(
2
), pp.
199
212
.10.1080/0305215X.2014.995644
34.
Horn
,
R.
, and
Johnson
,
C.
,
2013
,
Matrix Analysis, Matrix Analysis
,
Cambridge University Press
,
Cambridge, UK
.
35.
Virtanen
,
P.
,
Gommers
,
R.
,
Oliphant
,
T. E.
,
Haberland
,
M.
,
Reddy
,
T.
,
Cournapeau
,
D.
,
Burovski
,
E.
, et al.,
2020
, “
SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python
,”
Nat. Methods
,
17
(
3
), pp.
261
272
.10.1038/s41592-019-0686-2
36.
Bini
,
D.
,
Iannazzo
,
B.
, and
Meini
,
B.
,
2012
,
Numerical Solution of Algebraic Riccati Equations
(Fundamentals of Algorithms), Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA.
37.
Rustagi
,
V.
, and
Sultan
,
C.
,
2024
, “
Closed-Form Solutions to Continuous-Time Algebraic Riccati Equation for Second-Order Systems
,”
ASME J. Appl. Mech.
,
91
(
6
), p.
061010
.10.1115/1.4065057
38.
Norman
,
M. C.
, and
Peck
,
M. A.
,
2008
, “
Modeling and Properties of a Flux-Pinned Network of Satellites
,” Society for Industrial and Applied Mathematics (
SIAM
), Philadelphia, PA, Paper No. AAS 07–270.https://static1.squarespace.com/static/56f67f2820c64796d51b3a33/t/5a79dcc224a6948cfd2fd61c/1517935811602/NormanPeck_AAS2007.pdf
39.
Shoer
,
J.
, and
Peck
,
M.
,
2007
, “
A Flux-Pinned Magnet-Superconductor Pair for Close-Proximity Station Keeping and Self-Assembly of Spacecraft
,”
AIAA
Paper No. 2007-6352.10.2514/6.2007-6352
40.
Meirovitch
,
L.
, and
Ryland
,
G.
,
1985
, “
A Perturbation Technique for Gyroscopic Systems With Small Internal and External Damping
,”
J. Sound Vib.
,
100
(
3
), pp.
393
408
.10.1016/0022-460X(85)90295-0
41.
Tedrake
,
R.
, and Drake Development Team,
2019
, “
Drake: Model-Based Design and Verification for Robotics
,” Drake, Warren, MI, accessed June 10, https://drake.mit.edu
42.
Varga
,
A.
,
2008
, “
On Solving Periodic Riccati Equations
,”
Numer. Linear Algebra Appl.
,
15
(
9
), pp.
809
835
.10.1002/nla.604
You do not currently have access to this content.