Abstract

This technical brief makes use of the concept of symbolic time-series analysis (STSA) for identifying discrete states from the nonlinear time response of a chaotic dynamical system for model-free reinforcement learning (RL) control. Along this line, a projection-based method is adopted to construct probabilistic finite state automata (PFSA) for identification of the current state (i.e., operational regime) of the Lorenz system; and a simple Q-map-based (and model-free) RL control strategy is formulated to reach the target state from the (identified) current state. A synergistic combination of PFSA-based state identification and RL control is demonstrated by the simulation of a numeric model of the Lorenz system, which yields very satisfactory performance to reach the target states from the current states in real-time.

References

1.
Murphy
,
K.
,
2012
,
Machine Learning: A Probabilistic Perspective
,
The MIT Press
,
Cambridge, MA
.
2.
Bishop
,
C.
,
2006
,
Pattern Recognition and Machine Learning
,
Springer
,
New York
.
3.
Niazazari
,
I.
, and
Livani
,
H.
,
2018
, “
A PMU-Data-Driven Disruptive Event Classification in Distribution Systems
,”
Electric Power Syst. Res.
,
157
, pp.
251
260
.10.1016/j.epsr.2017.12.021
4.
Bhattacharya
,
C.
,
O'Connor
,
J.
, and
Ray
,
A.
,
2022
, “
Data-Driven Detection and Early Prediction of Thermoacoustic Instability in a Multi-Nozzle Combustor
,”
Combust. Sci. Technol.
,
194
(
7
), pp.
1481
1512
.10.1080/00102202.2020.1820495
5.
Lessmeier
,
C.
,
Kimotho
,
J. K.
,
Zimmer
,
D.
, and
Sextro
,
W.
,
2016
, “
Condition Monitoring of Bearing Damage in Electromechanical Drive Systems by Using Motor Current Signals of Electric Motors: A Benchmark Data Set for Data-Driven Classification
,”
Proceedings of the 3rd European Conference of the Prognostics and Health Management Society
,
Bilbao, Spain
, July 5–8, pp.
1
17
.https://pdfs.semanticscholar.org/79c0/7f2be8dd894deb572070f674e514d3dd1caa.pdf?_gl=1*80zrhm*_ga*MjAyOT YyNDE3Ny4xNzE1MT UzNTAz*_ga_H7P4ZT52H5*MTcxNTkzMDY0Mi41LjAuMTcxNTkzMDY0OC41NC4wLjA
6.
Ghalyan
,
N. F.
, and
Ray
,
A.
,
2020
, “
Symbolic Time Series Analysis for Anomaly Detection in Measure-Invariant Ergodic Systems
,”
ASME J. Dyn. Syst., Meas., Control
,
142
(
6
), p.
061003
.10.1115/1.4046156
7.
Daw
,
C. S.
,
Finney
,
C. E. A.
, and
Tracy
,
E. R.
,
2003
, “
A Review of Symbolic Analysis of Experimental Data
,”
Rev. Sci. Instrum.
,
74
(
2
), pp.
915
930
.10.1063/1.1531823
8.
Mukherjee
,
K.
, and
Ray
,
A.
,
2014
, “
State Splitting and Merging in Probabilistic Finite State Automata for Signal Representation and Analysis
,”
Signal Process.
,
104
, pp.
105
119
.10.1016/j.sigpro.2014.03.045
9.
Bhattacharya
,
C.
, and
Ray
,
A.
,
2022
, “
Thresholdless Classification of Chaotic Dynamics and Combustion Instability Via Probabilistic Finite State Automata
,”
Mech. Syst. Signal Process.
,
164
, p.
108213
.10.1016/j.ymssp.2021.108213
10.
Bhattacharya
,
C.
, and
Ray
,
A.
,
2021
, “
Transfer Learning for Detection of Combustion Instability Via Symbolic Time Series Analysis
,”
ASME J. Dyn. Syst., Meas., Control
,
143
(
10
), p.
101002
.10.1115/1.4050847
11.
Bhattacharya
,
C.
, and
Ray
,
A.
,
2020
, “
Online Discovery and Classification of Operational Regimes From an Ensemble of Time Series Data
,”
ASME J. Dyn. Syst., Meas., Control
,
142
(
11
), p.
114501
.10.1115/1.4047449
12.
Sutton
,
R. S.
, and
Barto
,
A. G.
,
2018
,
Reinforcement Learning: An Introduction
, 3rd ed.,
MIT Press
,
Cambridge, MA
.
13.
Chen
,
X.
, and
Ray
,
A.
,
2022
, “
Deep Reinforcement Learning Control of a Boiling Water Reactor
,”
IEEE Trans. Nucl. Sci.
,
69
(
8
), pp.
1820
1832
.10.1109/TNS.2022.3187662
14.
Ray
,
A.
,
2004
, “
Symbolic Dynamic Analysis of Complex Systems for Anomaly Detection
,”
Signal Process.
,
84
(
7
), pp.
1115
1130
.10.1016/j.sigpro.2004.03.011
15.
Lorenz
,
E.
,
1963
, “
Deterministic Nonperiodic Flow
,”
J. Atmos. Sci.
,
20
(
2
), pp.
130
141
.10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
16.
Lorenz
,
E.
,
1972
, “
Predictability: Does the Flap of a Butterfly's Wing in Brazil Set Off a Tornado in Texas?
,”
American Association for the Advancement of Sciences, 139th Meeting
, Washington, DC, Dec. 29.https://static.gymportalen.dk/sites/lru.dk/files/lru/132_kap6_lorenz_artikel_the_butterfly_effect.pdf
17.
Sparrow
,
C.
,
2012
,
The Lorenz Equations: Bifurcations, Chaos, and Strange Attractors
, Vol.
41
,
Springer Science & Business Media
,
New York
.
18.
Bhattacharya
,
C.
, and
Ray
,
A.
,
2021
, “
Data-Driven Detection and Classification of Regimes in Chaotic Systems Via Hidden Markov Modeling
,”
ASME Lett. Dyn. Syst. Control
,
1
(
2
), p.
021009
.10.1115/1.4047817
19.
Burden
,
B.
, and
Faires
,
J.
,
2010
,
Numerical Analysis
,
Cengage Learning
,
New Delhi, India
.
20.
Dupont
,
P.
,
Denis
,
F.
, and
Esposito
,
Y.
,
2005
, “
Links Between Probabilistic Automata and Hidden Markov Models: Probability Distributions, Learning Models and Induction Algorithms
,”
Pattern Recognit.
,
38
(
9
), pp.
1349
1371
.10.1016/j.patcog.2004.03.020
21.
Beim Graben
,
P.
,
2001
, “
Estimating and Improving the Signal-to-Noise Ratio of Time Series by Symbolic Dynamics
,”
Phys. Rev. E
,
64
(
5
), p.
051104
.10.1103/PhysRevE.64.051104
22.
Rajagopalan
,
V.
, and
Ray
,
A.
,
2006
, “
Symbolic Time Series Analysis Via Wavelet-Based Partitioning
,”
Signal Process.
,
86
(
11
), pp.
3309
3320
.10.1016/j.sigpro.2006.01.014
23.
Berman
,
A.
, and
Plemmons
,
R.
,
1994
,
Nonnegative Matrices in the Mathematical Sciences
,
SIAM
,
Philadelphia, PA
.
24.
Bhattacharya
,
C.
,
2022
, Frontiers in Data-Driven Learning Via Probabilistic Finite State Automata,
Ph.D. thesis
, The Pennsylvania State University, University Park, PA.https://etda.libraries.psu.edu/files/final_submissions/25900
25.
Tran
,
H.-D.
,
Cai
,
F.
,
Diego
,
M. L.
,
Musau
,
P.
,
Johnson
,
T. T.
, and
Koutsoukos
,
X.
,
2019
, “
Safety Verification of Cyber-Physical Systems With Reinforcement Learning Control
,”
ACM Trans. Embedded Comput. Syst. (TECS
),
18
(
5 s
), pp.
1
22
.10.1145/3358230
You do not currently have access to this content.