Abstract

During the flight of unmanned aerial vehicles (UAVs), potential system faults can lead to mission failure or even crashes. Therefore, it is important to equip the ground control station (GCS) with a fault detection module. However, malicious attackers may launch denial-of-service (DoS) attacks to interfere with the network communication between UAVs and GCS, which can result in the failure of the fault detection mechanism. This study presents a robust fault detection scheme for UAVs in the presence of DoS attacks. Specifically, a fault detection filter (FDF) is devised to produce residual signals, while a resilient event-triggered mechanism (ETM) is implemented to enhance network bandwidth utilization efficiency and alleviate the adverse effects of DoS attacks. By considering the H performance index and analyzing the exponential stability of the switching residual system, the event triggering parameters and the filter gain matrix are obtained. Furthermore, a detection logic utilizing residuals and thresholds is introduced to facilitate fault detection. Simulation results confirm the viability of this fault detection approach, which is grounded in a resilient event trigger mechanism.

References

1.
Hao
,
L.-Y.
,
Zhang
,
H.
,
Li
,
T.-S.
,
Lin
,
B.
, and
Chen
,
C. L. P.
,
2021
, “
Fault Tolerant Control for Dynamic Positioning of Unmanned Marine Vehicles Based on t-s Fuzzy Model With Unknown Membership Functions
,”
IEEE Trans. Veh. Technol.
,
70
(
1
), pp.
146
157
.10.1109/TVT.2021.3050044
2.
Hao
,
L.-Y.
,
Zhang
,
H.
,
Guo
,
G.
, and
Li
,
H.
,
2021
, “
Quantized Sliding Mode Control of Unmanned Marine Vehicles: Various Thruster Faults Tolerated With a Unified Model
,”
IEEE Trans. Syst., Man, Cybern.: Syst.
,
51
(
3
), pp.
2012
2026
.10.1109/TSMC.2019.2912812
3.
Hao
,
L.-Y.
,
Yu
,
Y.
,
Li
,
T.-S.
, and
Li
,
H.
,
2022
, “
Quantized Output-Feedback Control for Unmanned Marine Vehicles With Thruster Faults Via Sliding mode Technique
,”
IEEE Trans. Cybern.
,
52
(
9
), pp.
9363
9376
.10.1109/TCYB.2021.3050003
4.
Bhagdikar
,
P.
,
Gankov
,
S.
,
Rengarajan
,
S.
,
Sarlashkar
,
J. V.
,
Hotz
,
S.
, and
Bakshi
,
K.
,
2022
, “
Quantifying System Level Impact of Connected and Automated Vehicles in an Urban Corridor
,”
SAE
Paper No. 2022-01-0153.10.4271/2022-01-0153
5.
Zhong
,
Y.
,
Zhang
,
Y.
,
Zhang
,
W.
,
Zuo
,
J.
, and
Zhan
,
H.
,
2018
, “
Robust Actuator Fault Detection and Diagnosis for a Quadrotor Uav With External Disturbances
,”
IEEE Access
,
6
, pp.
48169
48180
.10.1109/ACCESS.2018.2867574
6.
Cao
,
L.
,
Yang
,
X.
,
Wang
,
G.
,
Liu
,
Y.
, and
Hu
,
Y.
,
2022
, “
Fault Detection Based on Extended State Observer and Interval Observer for Uavs
,”
Aircr. Eng. Aerosp. Technol.
,
94
(
10
), pp.
1759
1771
.10.1108/AEAT-05-2021-0164
7.
Abbaspour
,
A.
,
Aboutalebi
,
P.
,
Yen
,
K. K.
, and
Sargolzaei
,
A.
,
2017
, “
Neural Adaptive Observer-Based Sensor and Actuator Fault Detection in Nonlinear Systems: Application in UAV
,”
ISA Trans.
,
67
, pp.
317
329
.10.1016/j.isatra.2016.11.005
8.
Baskaya
,
E.
,
Bronz
,
M.
, and
Delahaye
,
D.
,
2017
, “
Fault Detection & Diagnosis for Small Uavs Via Machine Learning
,” IEEE/AIAA 36th Digital Avionics Systems Conference (
DASC
), St. Petersburg, FL, Sept. 17–21, pp.
1
6
.10.1109/DASC.2017.8102037
9.
Freeman
,
P.
,
Pandita
,
R.
,
Srivastava
,
N.
, and
Balas
,
G. J.
,
2013
, “
Model-Based and Data-Driven Fault Detection Performance for a Small UAV
,”
IEEE/ASME Trans. Mechatron.
,
18
(
4
), pp.
1300
1309
.10.1109/TMECH.2013.2258678
10.
Pajic
,
M.
,
Weimer
,
J.
,
Bezzo
,
N.
,
Sokolsky
,
O.
,
Pappas
,
G. J.
, and
Lee
,
I.
,
2017
, “
Design and Implementation of Attack-Resilient Cyberphysical Systems: With a Focus on Attack-Resilient State Estimators
,”
IEEE Control Syst. Mag.
,
37
(
2
), pp.
66
81
.10.1109/MCS.2016.2643239
11.
Gu
,
Y.
,
Guo
,
K.
,
Zhao
,
C.
,
Yu
,
X.
, and
Guo
,
L.
,
2023
, “
Fast Reactive Mechanism for Desired Trajectory Attacks on Unmanned Aerial Vehicles
,”
IEEE Trans. Ind. Inf.
,
19
(
8
), pp.
8976
8984
.10.1109/TII.2022.3224980
12.
Huang
,
K.-W.
, and
Wang
,
H.-M.
,
2018
, “
Combating the Control Signal Spoofing Attack in UAV Systems
,”
IEEE Trans. Veh. Technol.
,
67
(
8
), pp.
7769
7773
.10.1109/TVT.2018.2830345
13.
Gu
,
Y.
,
Yu
,
X.
,
Guo
,
K.
,
Qiao
,
J.
, and
Guo
,
L.
,
2021
, “
Detection, Estimation, and Compensation of False Data Injection Attack for UAVs
,”
Inf. Sci.
,
546
, pp.
723
741
.10.1016/j.ins.2020.08.055
14.
Abbaspour
,
A.
,
Yen
,
K. K.
,
Noei
,
S.
, and
Sargolzaei
,
A.
,
2016
, “
Detection of Fault Data Injection Attack on UAV Using Adaptive Neural Network
,”
Proc. Comput. Sci.
,
95
, pp.
193
200
.10.1016/j.procs.2016.09.312
15.
Kevin
,
F.
, and
Wenyuan
,
F.
,
2018
, “
Risks of Trusting the Physics of Sensors
,”
Commun. ACM
,
61
(
2
), pp.
20
23
.10.1145/3176402
16.
Pan
,
K.
,
Lyu
,
Y.
, and
Pan
,
Q.
,
2022
, “
Adaptive Formation for Multiagent Systems Subject to Denial-of Service Attacks
,”
IEEE Trans. Circuits Syst. I
,
69
(
8
), pp.
3391
3401
.10.1109/TCSI.2022.3168163
17.
Zhao
,
L.
, and
Yang
,
G.-H.
,
2020
, “
Adaptive Fault-tolerant Control for Nonlinear Multi-Agent Systems With DoS Attacks
,”
Inf. Sci.
,
526
, pp.
39
53
.10.1016/j.ins.2020.03.083
18.
Yan
,
J.-J.
, and
Yang
,
G.-H.
,
2021
, “
Adaptive Fault Estimation for Cyber-Physical Systems With Intermittent DoS Attacks
,”
Inf. Sci.
,
547
, pp.
746
762
.10.1016/j.ins.2020.08.086
19.
Fouda
,
R. M.
,
2018
, “
Security Vulnerabilities of Cyberphysical Unmanned Aircraft Systems
,”
IEEE Aerosp. Electron. Syst. Mag.
,
33
(
9
), pp.
4
17
.10.1109/MAES.2018.170021
20.
Chen
,
M.
,
Liu
,
W.
,
Wang
,
T.
,
Zhang
,
S.
, and
Liu
,
A.
,
2022
, “
A Game-Based Deep Reinforcement Learning Approach for Energy-Efficient Computation in MEC Systems
,”
Knowl.-Based Syst.
,
235
, p.
107660
.10.1016/j.knosys.2021.107660
21.
Byres
,
E.
, and
Lowe
,
J.
,
2004
, “
The Myths and Facts Behind Cyber Security Risks for Industrial Control Systems
,”
Proceedings of the VDE Kongress
, Berlin, Germany, Oct. 18–20, pp.
213
218
.https://www.researchgate.net/publication/237240867_The_Myths_and_Facts_behind_Cyber_Security_Risks_for_Industrial_Control_Systems
22.
Ortega-Fernandez
,
I.
, and
Liberati
,
F.
,
2023
, “
A Review of Denial of Service Attack and Mitigation in the Smart Grid Using Reinforcement Learning
,”
Energies
,
16
(
2
), p.
635
.10.3390/en16020635
23.
Pan
,
Y.
,
Wu
,
Y.
, and
Lam
,
H.-K.
,
2022
, “
Security-based Fuzzy Control for Nonlinear Networked Control Systems With Dos Attacks Via a Resilient Event-triggered Scheme
,”
IEEE Trans. Fuzzy Syst.
,
30
(
10
), pp.
4359
4368
.10.1109/TFUZZ.2022.3148875
24.
Zhao
,
R.
,
Zuo
,
Z.
, and
Wang
,
Y.
,
2022
, “
Event-triggered Control for Switched Systems With Denial-of-Service Attack
,”
IEEE Trans. Autom. Control
,
67
(
8
), pp.
4077
4090
.10.1109/TAC.2022.3176442
25.
Fei
,
Z.
,
Wang
,
X.
, and
Wang
,
Z.
,
2022
, “
Event-based Fault Detection for Unmanned Surface Vehicles Subject to Denial-of-Service Attacks
,”
IEEE Trans. Syst., Man, Cybern.: Syst.
,
52
(
5
), pp.
3326
3336
.10.1109/TSMC.2021.3064884
26.
Yang
,
J.
,
Zhong
,
Q.
,
Shi
,
K.
, and
Zhong
,
S.
,
2022
, “
Co-Design of Observer-Based Fault Detection Filter and Dynamic Event-Triggered Controller for Wind Power System Under Dual Alterable Dos Attacks
,”
IEEE Trans. Inf. Forensics Secur.
,
17
, pp.
1270
1284
.10.1109/TIFS.2022.3160355
27.
Ye
,
Z.
,
Zhang
,
D.
,
Cheng
,
J.
, and
Wu
,
Z.-G.
,
2022
, “
Event-Triggering and Quantized Sliding Mode Control of Umv Systems Under DoS Attack
,”
IEEE Trans. Veh. Technol.
,
71
(
8
), pp.
8199
8211
.10.1109/TVT.2022.3175726
28.
Zhao
,
N.
,
Zhao
,
X.
,
Xu
,
N.
, and
Zhang
,
L.
,
2023
, “
Resilient Event-Triggered Control of Connected Automated Vehicles Under Cyber Attacks
,”
IEEE/CAA J. Automat. Sin.
,
10
(
12
), pp.
2300
2302
.10.1109/JAS.2023.123483
29.
Cao
,
L.
,
Pan
,
Y.
,
Liang
,
H.
, and
Huang
,
T.
,
2023
, “
Observer-Based Dynamic Event-Triggered Control for Multiagent Systems With Time-Varying Delay
,”
IEEE Trans. Cybern.
,
53
(
5
), pp.
3376
3387
.10.1109/TCYB.2022.3226873
30.
Qi
,
W.
,
Zhang
,
C.
,
Zong
,
G.
,
Su
,
S.-F.
, and
Chadli
,
M.
,
2023
, “
Finite-Time Event-Triggered Stabilization for Discrete-Time Fuzzy Markov Jump Singularly Perturbed Systems
,”
IEEE Trans. Cybern.
,
53
(
7
), pp.
4511
4520
.10.1109/TCYB.2022.3207430
31.
Li
,
Y.
,
Zhu
,
X.
, and
Yin
,
G.
,
2023
, “
Robust Actuator Fault Detection for Quadrotor Uav With Guaranteed Sensitivity
,”
Control Eng. Pract.
,
138
, p.
105588
.10.1016/j.conengprac.2023.105588
32.
Yin
,
Z.
,
2013
, “
Research on Fault Diagnosis and Tolerance Control for a Multi-Faulty Quadrotor System
,” Master’s thesis,
Nanjing University of Aeronautics and Astronautics
,
Chinese
.
33.
Jabbari Asl
,
H.
,
2019
, “
Robust Vision-Based Tracking Control of VTOL Unmanned Aerial Vehicles
,”
Automatica
,
107
, pp.
425
432
.10.1016/j.automatica.2019.06.004
34.
Raffo
,
G. V.
,
Ortega
,
M. G.
, and
Rubio
,
F. R.
,
2010
, “
An Integral Predictive/Nonlinear H1 Control Structure for a Quadrotor Helicopter
,”
Automatica
,
46
(
1
), pp.
29
39
.10.1016/j.automatica.2009.10.018
35.
Wang
,
X.
, and
Lemmon
,
M. D.
,
2011
, “
Event-triggering in Distributed Networked Control Systems
,”
IEEE Trans. Autom. Control
,
56
(
3
), pp.
586
601
.10.1109/TAC.2010.2057951
36.
Hu
,
S.
,
Yue
,
D.
,
Dou
,
C.
,
Xie
,
X.
,
Ma
,
Y.
, and
Ding
,
L.
,
2022
, “
Attack-Resilient Event-Triggered Fuzzy Interval Type-2 Filter Design for Networked Nonlinear Systems Under Sporadic Denial-of-Service Jamming Attacks
,”
IEEE Trans. Fuzzy Syst.
,
30
(
1
), pp.
190
204
.10.1109/TFUZZ.2020.3033851
37.
Zha
,
L.
,
Tian
,
E.
,
Xie
,
X.
,
Gu
,
Z.
, and
Cao
,
J.
,
2018
, “
Decentralized Event-Triggered H∞ Control for Neural Networks Subject to Cyber-Attacks
,”
Inf. Sci.
,
457–458
, pp.
141
155
.10.1016/j.ins.2018.04.018
38.
Yang
,
Y.
,
Song
,
F.
, and
Zhang
,
W.
,
2021
, “
Interval Estimation of Sensor Fault for Attitude Control System of UAV
,”
Electron. Sci. Technol.
,
34
(
10
), pp.
56
62
.10.16180/j.cnki.issn1007-7820.2021.10.009
You do not currently have access to this content.