Abstract

In order to keep the power battery work within an ideal temperature range for the electric vehicle, the liquid cooling plate with parallel multi-channels is designed, and a three-dimensional thermal model of battery module with the liquid cooling plate is established. Subsequently, the effects of the cooling plate thickness and the cooling pipe thickness, channel number and coolant mass flow rate on the cooling performance of battery modules are analyzed. The results show that four parameters of the cooling plate have an important role in the thermal behavior of the liquid-cooled battery system. It is not good to improve the performance of the cooling system by changing only certain parameters. The four factors discussed above are optimized by using orthogonal test according to the univariate analysis. With the use of the orthogonal test, the optimization model obtained is obviously enhanced in the aspect of maximum temperature control and temperature uniformity of liquid-cooled battery module. Results show that the three-dimensional thermal analysis and orthogonal test method are compatible with optimal design of liquid-cooled battery modules.

References

1.
Rao
,
Z.
, and
Wang
,
S.
,
2011
, “
A Review of Power Battery Thermal Energy Management
,”
Renewable Sustainable Energy Rev.
,
15
(
9
), pp.
4554
4571
. 10.1016/j.rser.2011.07.096
2.
Shui
,
L.
,
Peng
,
X.
,
Zhang
,
J.
,
Garg
,
A.
,
Nguyen
,
H.
, and
Phung Le
,
M.L.
,
2019
, “
A Coupled Mechanical–Electrochemical Study of Li-Ion Battery Based on Genetic Programming and Experimental Validation
,”
ASME J. Electrochem. Energy Convers. Storage
,
16
(
1
), p.
011008
. 10.1115/1.4040824
3.
Larsson
,
F.
, and
Mellander
,
B.
,
2014
, “
Abuse by External Heating, Overcharge and Short Circuiting of Commercial Lithium-Ion Battery Cells
,”
J. Electrochem. Soc.
,
161
(
10
), pp.
A1611
A1617
. 10.1149/2.0311410jes
4.
Perea
,
A.
,
Paolella
,
A.
,
Dubé
,
J.
,
Champagne
,
D.
,
Mauger
,
A.
, and
Zaghib
,
K.
,
2018
, “
State of Charge Influence on Thermal Reactions and Abuse Tests in Commercial Lithium-Ion Cells
,”
J. Power Sources
,
399
, pp.
392
397
. 10.1016/j.jpowsour.2018.07.112
5.
Brand
,
M. J.
,
Glaser
,
S.
,
Geder
,
J.
,
Menacher
,
S.
, and
Quinger
,
D.
,
2013
, “
Electrical Safety of Commercial Li-ion Cells Based on NMC and NCA Technology Compared to LFP Technology
,”
World Electric Vehicle Symposium and Exhibition 2013 (EVS27)
,
Barcelona, Spain
,
Nov. 17–20
, IEEE, pp.
572
578
.
6.
Jia
,
Y.
,
Yin
,
S.
,
Liu
,
B.
,
Zhao
,
H.
,
Yu
,
H.
,
Li
,
J.
, and
Xu
,
J.
,
2019
, “
Unlocking the Coupling Mechanical-Electrochemical Behavior of Lithium-Ion Battery Upon Dynamic Mechanical Loading
,”
Energy
,
166
, pp.
951
960
. 10.1016/j.energy.2018.10.142
7.
Yuan
,
C.
,
Gao
,
X.
,
Wong
,
H.
,
Feng
,
B.
, and
Xu
,
J.
,
2019
, “
A Multiphysics Computational Framework for Cylindrical Battery Behavior Upon Mechanical Loading Based on LS-DYNA
,”
J. Electrochem. Soc.
,
166
(
6
), pp.
A1160
A1169
. 10.1149/2.1071906jes
8.
Wang
,
Q.
,
Ping
,
P.
,
Zhao
,
X.
,
Chu
,
G.
,
Sun
,
J.
, and
Chen
,
C.
,
2012
, “
Thermal Runaway Caused Fire and Explosion of Lithium ion Battery
,”
J. Power Sources
,
208
, pp.
210
224
. 10.1016/j.jpowsour.2012.02.038
9.
Ge
,
H.
,
Huang
,
J.
,
Zhang
,
J.
, and
Li
,
Z.
,
2016
, “
Temperature-Adaptive Alternating Current Preheating of Lithium-Ion Batteries With Lithium Deposition Prevention
,”
J. Electrochem. Soc.
,
163
(
2
), pp.
A290
A299
. 10.1149/2.0961602jes
10.
Ritchie
,
A.
, and
Howard
,
W.
,
2006
, “
Recent Developments and Likely Advances in Lithium-Ion Batteries
,”
J. Power Sources
,
162
(
2
), pp.
809
812
. 10.1016/j.jpowsour.2005.07.014
11.
Qu
,
Z.
,
Li
,
W.
, and
Tao
,
W.
,
2014
, “
Numerical Model of the Passive Thermal Management System for High-Power Lithium Ion Battery by Using Porous Metal Foam Saturated With Phase Change Material
,”
Int. J. Hydrogen Energy
,
39
(
8
), pp.
3904
3913
. 10.1016/j.ijhydene.2013.12.136
12.
Garg
,
A.
,
Peng
,
X.
,
Phung Le
,
M.L.
,
Pareek
,
K.
, and
Chin
,
C.M.M
,
2018
, “
Design and Analysis of Capacity Models for Lithium-Ion Battery
,”
Measurement
,
120
, pp.
114
120
. 10.1016/j.measurement.2018.02.003
13.
Samimi
,
F.
,
Babapoor
,
A.
,
Azizi
,
M.
, and
Karimi
,
G.
,
2016
, “
Thermal Management Analysis of a Li-Ion Battery Cell Using Phase Change Material Loaded With Carbon Fibers
,”
Energy
,
96
, pp.
355
371
. 10.1016/j.energy.2015.12.064
14.
Park
,
H.
,
2013
, “
A Design of air Flow Configuration for Cooling Lithium Ion Battery in Hybrid Electric Vehicles
,”
J. Power Sources
,
239
, pp.
30
36
. 10.1016/j.jpowsour.2013.03.102
15.
Rao
,
Z.
,
Wang
,
Q.
, and
Huang
,
C.
,
2016
, “
Investigation of the Thermal Performance of Phase Change Material/Mini-Channel Coupled Battery Thermal Management System
,”
Appl. Energy
,
164
, pp.
659
669
. 10.1016/j.apenergy.2015.12.021
16.
Zhao
,
J.
,
Rao
,
Z.
,
Huo
,
Y.
,
Liu
,
X.
, and
Li
,
Y.
,
2015
, “
Thermal Management of Cylindrical Power Battery Module for Extending the Life of new Energy Electric Vehicles
,”
Appl. Therm. Eng.
,
85
, pp.
33
43
. 10.1016/j.applthermaleng.2015.04.012
17.
Yang
,
N.
,
Zhang
,
X.
,
Li
,
G.
, and
Hua
,
D.
,
2015
, “
Assessment of the Forced Air-Cooling Performance for Cylindrical Lithium-Ion Battery Packs: A Comparative Analysis Between Aligned and Staggered Cell Arrangements
,”
Appl. Therm. Eng.
,
80
, pp.
55
65
. 10.1016/j.applthermaleng.2015.01.049
18.
Ling
,
Z.
,
Wang
,
F.
,
Fang
,
X.
,
Gao
,
X.
, and
Zhang
,
Z.
,
2015
, “
A Hybrid Thermal Management System for Lithium Ion Batteries Combining Phase Change Materials With Forced-Air Cooling
,”
Appl. Energy
,
148
, pp.
403
409
. 10.1016/j.apenergy.2015.03.080
19.
Mahamud
,
R.
, and
Park
,
C.
,
2011
, “
Reciprocating Air Flow for Li-Ion Battery Thermal Management to Improve Temperature Uniformity
,”
J. Power Sources
,
196
(
13
), pp.
5685
5696
. 10.1016/j.jpowsour.2011.02.076
20.
Xie
,
J.
,
Ge
,
Z.
,
Zang
,
M.
, and
Wang
,
S.
,
2017
, “
Structural Optimization of Lithium-Ion Battery Pack With Forced Air Cooling System
,”
Appl. Therm. Eng.
,
126
, pp.
583
593
. 10.1016/j.applthermaleng.2017.07.143
21.
Wang
,
T.
,
Tseng
,
K.J.
,
Zhao
,
J.
, and
Wei
,
Z.
,
2014
, “
Thermal Investigation of Lithium-Ion Battery Module With Different Cell Arrangement Structures and Forced Air-Cooling Strategies
,”
Appl. Energy
,
134
, pp.
229
238
. 10.1016/j.apenergy.2014.08.013
22.
Bai
,
F.
,
Chen
,
M.
,
Song
,
W.
,
Feng
,
Z.
,
Li
,
Y.
, and
Ding
,
Y.
,
2017
, “
Thermal Management Performances of PCM/Water Cooling-Plate Using for Lithium-Ion Battery Module Based on Non-Uniform Internal Heat Source
,”
Appl. Therm. Eng.
,
126
, pp.
17
27
. 10.1016/j.applthermaleng.2017.07.141
23.
Javani
,
N.
,
Dincer
,
I.
,
Naterer
,
G.
, and
Rohrauer
,
G.
,
2014
, “
Modeling of Passive Thermal Management for Electric Vehicle Battery Packs With PCM Between Cells
,”
Appl. Therm. Eng.
,
273
, pp.
307
316
. 10.1016/j.applthermaleng.2014.07.037
24.
Rao
,
Z.
,
Qian
,
Z.
,
Kuang
,
Y.
, and
Li
,
Y.
,
2017
, “
Thermal Performance of Liquid Cooling Based Thermal Management System for Cylindrical Lithium-Ion Battery Module With Variable Contact Surface
,”
Appl. Therm. Eng.
,
123
, pp.
1514
1522
. 10.1016/j.applthermaleng.2017.06.059
25.
Teng
,
H.
, and
Yeow
,
K.
,
2012
, “
Design of Direct and Indirect Liquid Cooling Systems for High- Capacity, High-Power Lithium-Ion Battery PACKs
,”
SAE Int. J. Altern. Powertrains
,
1
(
2
), pp.
525
536
. 10.4271/2012-01-2017
26.
Chen
,
D.
,
Jiang
,
J.
,
Kim
,
G.
,
Yang
,
C.
, and
Pesaran
,
A.
,
2016
, “
Comparison of Different Cooling Methods for Lithium Ion Battery Cells
,”
Appl. Therm. Eng.
,
94
, pp.
846
854
. 10.1016/j.applthermaleng.2015.10.015
27.
Jarrett
,
A.
, and
Kim
,
I.
,
2011
, “
Design Optimization of Electric Vehicle Battery Cooling Plates for Thermal Performance
,”
J. Power Sources
,
196
(
23
), pp.
10359
10368
. 10.1016/j.jpowsour.2011.06.090
28.
Zhao
,
J.
,
Rao
,
Z.
, and
Li
,
Y.
,
2015
, “
Thermal Performance of Mini-Channel Liquid Cooled Cylinder Based Battery Thermal Management for Cylindrical Lithium-Ion Power Battery
,”
Energy Convers. Manage.
,
103
, pp.
157
165
. 10.1016/j.enconman.2015.06.056
29.
Fathabadi
,
H.
,
2014
, “
A Novel Design Including Cooling Media for Lithium-Ion Batteries Pack Used in Hybrid and Electric Vehicles
,”
J. Power Sources
,
245
(
1
), pp.
495
500
. 10.1016/j.jpowsour.2013.06.160
30.
Jin
,
L.
,
Lee
,
P.
,
Kong
,
X.
,
Fan
,
Y.
, and
Chou
,
S.
,
2014
, “
Ultra-Thin Minichannel LCP for EV Battery Thermal Management
,”
Appl. Energy
,
113
, pp.
1786
1794
. 10.1016/j.apenergy.2013.07.013
31.
Huo
,
Y.
,
Rao
,
Z.
,
Liu
,
X.
, and
Zhao
,
J.
,
2015
, “
Investigation of Power Battery Thermal Management by Using Mini-Channel Cold Plate
,”
Energy Convers. Manage.
,
89
, pp.
387
395
. 10.1016/j.enconman.2014.10.015
32.
Zhang
,
T.
,
Gao
,
Q.
,
Wang
,
G.
,
Gu
,
Y.
, and
Wang
,
Y.
,
2017
, “
Investigation on the Promotion of Temperature Uniformity for the Designed Battery Pack With Liquid Flow in Cooling Process
,”
Appl. Therm. Eng.
,
116
, pp.
655
662
. 10.1016/j.applthermaleng.2017.01.069
33.
Deng
,
T.
,
Zhang
,
G.
, and
Ran
,
Y.
,
2018
, “
Study on Thermal Management of Rectangular Li-Ion Battery With Serpentine-Channel Cold Plate
,”
Int. J. Heat Mass Transfer
,
125
, pp.
143
152
. 10.1016/j.ijheatmasstransfer.2018.04.065
34.
Xu
,
X.
,
Jiang
,
F.
,
Tian
,
J.
,
Li
,
R.
, and
Fu
,
J.
,
2017
, “
A Research on the Heat Flow Field Characteristics of Battery Pack Based on Heat Conduction Glue Cooling
,”
Automot. Eng.
,
39
(
8
), pp.
889
894 and 914
. 10.19562/j.chinasae.qcgc.2017.08.006
35.
Bernardi
,
D.
,
Pawlikowski
,
E.
, and
Newman
,
J.
,
1985
, “
A General Energy Balance for Battery Systems
,”
J. Electrochem. Soc.
,
132
(
1
), pp.
5
12
. 10.1149/1.2113792
36.
Pesaran
,
A.
,
Keyser
,
M.
, and
Burch
,
S.
,
1999
, “
An Approach for Designing Thermal Management Systems for Electric and Hybrid Vehicle Battery Packs
,” Office of Scientific & Technical Information Technical Reports.
You do not currently have access to this content.