Abstract

Lithium-ion batteries are currently being produced and used in large quantities in the automobile sector as a clean alternative to fossil fuels. The thermal behavior of the battery pack is a very important criterion, which is not only essential for safety but also has an equally important role in the capacity and life cycle of the batteries. The liquid battery thermal management system is a very efficient type of thermal management system, and mini-channel-based liquid cooling systems are one of the most popular type of the battery thermal management system and have been researched extensively. This paper mainly intends to study the effects of tapering, the addition of grooves to the channel, the use of different nanofluids, and the flow direction of coolant on the thermal performance of the battery pack using a three-dimensional computational fluid dynamics model. The results suggest that converging channels can be used to control the temperature rise, while diverging channels can be used to control the temperature deviation. The addition of grooves and the use of nanofluids were beneficial in reducing the temperature rise. The final setups were able to reduce the maximum temperature rise by 2.267 K with a substantial pressure drop increase and by 1.513 K with an increase in pressure drop of only 19.92%.

References

1.
Ling
,
Z.
,
Wang
,
F.
,
Fang
,
X.
,
Gao
,
X.
, and
Zhang
,
Z.
,
2015
, “
A Hybrid Thermal Management System for Lithium Ion Batteries Combining Phase Change Materials With Forced-Air Cooling
,”
Appl. Energy
,
148
, pp.
403
409
. 10.1016/j.apenergy.2015.03.080
2.
Ritchie
,
A. G.
,
2004
, “
Recent Developments and Likely Advances in Lithium Rechargeable Batteries
,”
J. Power Sources
,
136
(
2
SPEC. ISS.), pp.
285
289
. 10.1016/j.jpowsour.2004.03.013
3.
Ye
,
Y.
,
Saw
,
L. H.
,
Shi
,
Y.
, and
Tay
,
A. A. O.
,
2015
, “
Numerical Analyses on Optimizing a Heat Pipe Thermal Management System for Lithium-Ion Batteries During Fast Charging
,”
Appl. Therm. Eng.
,
86
, pp.
281
291
. 10.1016/j.applthermaleng.2015.04.066
4.
Yang
,
N.
,
Zhang
,
X.
,
Shang
,
B.
, and
Li
,
G.
,
2016
, “
Unbalanced Discharging and Aging Due to Temperature Differences Among the Cells in a Lithium-Ion Battery Pack With Parallel Combination
,”
J. Power Sources
,
306
, pp.
733
741
. 10.1016/j.jpowsour.2015.12.079
5.
Yang
,
N.
,
Zhang
,
X.
,
Li
,
G.
, and
Hua
,
D.
,
2015
, “
Assessment of the Forced Air-Cooling Performance for Cylindrical Lithium-Ion Battery Packs: A Comparative Analysis Between Aligned and Staggered Cell Arrangements
,”
Appl. Therm. Eng.
,
80
, pp.
55
65
. 10.1016/j.applthermaleng.2015.01.049
6.
Somasundaram
,
K.
,
Birgersson
,
E.
, and
Mujumdar
,
A. S.
,
2012
, “
Thermal-Electrochemical Model for Passive Thermal Management of a Spiral-Wound Lithium-Ion Battery
,”
J. Power Sources
,
203
, pp.
84
96
. 10.1016/j.jpowsour.2011.11.075
7.
Wang
,
Y.
,
Gao
,
Q.
,
Wang
,
G.
,
Lu
,
P.
,
Zhao
,
M.
, and
Bao
,
W.
,
2018
, “
A Review on Research Status and Key Technologies of Battery Thermal Management and Its Enhanced Safety
,”
Int. J. Energy Res.
,
42
(
13
), pp.
4008
4033
. 10.1002/er.4158
8.
Pesaran
,
A. A.
,
2001
, “
Battery Thermal Management in EVs and HEVs: Issues and Solutions
,”
Batter. Man
,
43
(
5
), pp.
34
49
.
9.
Al Hallaj
,
S.
, and
Selman
,
J. R.
,
2002
, “
A Novel Thermal Management System for Electric Vehicle Batteries Using Phase-Change Material
,”
J. Electrochem. Soc.
,
147
(
9
), p.
3231
. 10.1149/1.1393888
10.
Jaguemont
,
J.
,
Omar
,
N.
, and
Bossche
,
P. V. D.
,
2018
, “
Phase-Change Materials (PCM) for Automotive Applications: A Review
,”
Appl. Therm.
,
132
, pp.
308
320
. 10.1016/j.applthermaleng.2017.12.097
11.
Arora
,
S.
,
2018
, “
Selection of Thermal Management System for Modular Battery Packs of Electric Vehicles: A Review of Existing and Emerging Technologies
,”
J. Power Sources
,
400
, pp.
621
640
. 10.1016/j.jpowsour.2018.08.020
12.
Nazir
,
H.
,
Batool
,
M.
,
Osorio
,
F. J. B.
,
Isaza-Ruiz
,
M.
,
Xu
,
X.
,
Vignarooban
,
K.
,
Phelan
,
P.
,
Inamuddin
, and
Kannan
,
A. M.
,
2019
, “
Recent Developments in Phase Change Materials for Energy Storage Applications: A Review
,”
Int. J. Heat Mass Transf.
,
129
, pp.
491
523
. 10.1016/j.ijheatmasstransfer.2018.09.126
13.
Shatikian
,
V.
,
Ziskind
,
G.
, and
Letan
,
R.
,
2008
, “
Numerical Investigation of a PCM-Based Heat Sink With Internal Fins: Constant Heat Flux
,”
Int. J. Heat Mass Transf.
,
51
(
5–6
), pp.
1488
1493
. 10.1016/j.ijheatmasstransfer.2007.11.036
14.
Mills
,
A.
,
Farid
,
M.
,
Selman
,
J. R.
, and
Al-Hallaj
,
S.
,
2006
, “
Thermal Conductivity Enhancement of Phase Change Materials Using a Graphite Matrix
,”
Appl. Therm. Eng.
,
26
(
14–15
), pp.
1652
1661
. 10.1016/j.applthermaleng.2005.11.022
15.
Zhang
,
Z.
, and
Fang
,
X.
,
2006
, “
Study on Paraffin/Expanded Graphite Composite Phase Change Thermal Energy Storage Material
,”
Energy Convers. Manag.
,
47
(
3
), pp.
303
310
. 10.1016/j.enconman.2005.03.004
16.
Zhao
,
C. Y.
,
Lu
,
W.
, and
Tian
,
Y.
,
2010
, “
Heat Transfer Enhancement for Thermal Energy Storage Using Metal Foams Embedded Within Phase Change Materials (PCMs)
,”
Sol. Energy
,
84
(
8
), pp.
1402
1412
. 10.1016/j.solener.2010.04.022
17.
Huo
,
Y.
,
Rao
,
Z.
,
Liu
,
X.
, and
Zhao
,
J.
,
2015
, “
Investigation of Power Battery Thermal Management by Using Mini-Channel Cold Plate
,”
Energy Convers. Manag.
,
89
, pp.
387
395
. 10.1016/j.enconman.2014.10.015
18.
Qian
,
Z.
,
Li
,
Y.
, and
Rao
,
Z.
,
2016
, “
Thermal Performance of Lithium-Ion Battery Thermal Management System by Using Mini-Channel Cooling
,”
Energy Convers. Manag.
,
126
, pp.
622
631
. 10.1016/j.enconman.2016.08.063
19.
Panchal
,
S.
,
Khasow
,
R.
,
Dincer
,
I.
,
Agelin-Chaab
,
M.
,
Fraser
,
R.
, and
Fowler
,
M.
,
2017
, “
Thermal Design and Simulation of Mini-Channel Cold Plate for Water Cooled Large Sized Prismatic Lithium-Ion Battery
,”
Appl. Therm. Eng.
,
122
, pp.
80
90
. 10.1016/j.applthermaleng.2017.05.010
20.
Panchal
,
S.
,
Khasow
,
R.
,
Dincer
,
I.
,
Agelin-Chaab
,
M.
,
Fraser
,
R.
, and
Fowler
,
M.
,
2017
, “
Numerical Modeling and Experimental Investigation of a Prismatic Battery Subjected to Water Cooling
,”
Numer. Heat Transf. Part A Appl.
,
71
(
6
), pp.
626
637
. 10.1080/10407782.2016.1277938
21.
Jin
,
L. W.
,
Lee
,
P. S.
,
Kong
,
X. X.
,
Fan
,
Y.
, and
Chou
,
S. K.
,
2014
, “
Ultra-Thin Minichannel LCP for EV Battery Thermal Management
,”
Appl. Energy
,
113
, pp.
1786
1794
. 10.1016/j.apenergy.2013.07.013
22.
Zhao
,
C.
,
Sousa
,
A. C. M.
, and
Jiang
,
F.
,
2019
, “
Minimization of Thermal Non-Uniformity in Lithium-Ion Battery Pack Cooled by Channeled Liquid Flow
,”
Int. J. Heat Mass Transf.
,
129
, pp.
660
670
. 10.1016/j.ijheatmasstransfer.2018.10.017
23.
Han
,
D.
,
Jiaqiang
,
E.
,
Qiu
,
A.
,
Zhu
,
H.
,
Deng
,
Y.
,
Chen
,
J.
,
Zhao
,
X.
,
Zuo
,
W.
,
Wang
,
H.
,
Chen
,
J.
, and
Peng
,
Q.
,
2018
, “
Orthogonal Experimental Design of Liquid-Cooling Structure on the Cooling Effect of a Liquid-Cooled Battery Thermal Management System
,”
Appl. Therm. Eng.
,
132
, pp.
508
520
. 10.1016/j.applthermaleng.2017.12.115
24.
Liu
,
H.
,
Chika
,
E.
, and
Zhao
,
J.
,
2018
, “
Investigation Into the Effectiveness of Nanofluids on the Mini-Channel Thermal Management for High Power Lithium ion Battery
,”
Appl. Therm. Eng.
,
142
, pp.
511
523
. 10.1016/j.applthermaleng.2018.07.037
25.
Panchal
,
S.
,
Dincer
,
I.
,
Agelin-Chaab
,
M.
,
Fraser
,
R.
, and
Fowler
,
M.
,
2016
, “
Thermal Modeling and Validation of Temperature Distributions in a Prismatic Lithium-Ion Battery at Different Discharge Rates and Varying Boundary Conditions
,”
Appl. Therm. Eng.
,
96
, pp.
190
199
. 10.1016/j.applthermaleng.2015.11.019
26.
Lin
,
C.
,
Xu
,
S.
,
Chang
,
G.
, and
Liu
,
J.
,
2015
, “
Experiment and Simulation of a LiFePO4 Battery Pack With a Passive Thermal Management System Using Composite Phase Change Material and Graphite Sheets
,”
J. Power Sources
,
275
, pp.
742
749
. 10.1016/j.jpowsour.2014.11.068
27.
Pak
,
B. C.
, and
Cho
,
Y. I.
,
1998
, “
Hydrodynamic and Heat Transfer Study of Dispersed Fluids With Submicron Metallic Oxide Particles
,”
Exp. Heat Transf.
,
11
(
2
), pp.
151
170
. 10.1080/08916159808946559
28.
Xuan
,
Y.
, and
Roetzel
,
W.
,
2000
, “
Conceptions for Heat Transfer Correlation of Nanofluids
,”
Int. J. Heat Mass Transf.
,
43
(
19
), pp.
3701
3707
. 10.1016/S0017-9310(99)00369-5
29.
Syam Sundar
,
L.
,
Singh
,
M. K.
, and
Sousa
,
A. C. M.
,
2013
, “
Investigation of Thermal Conductivity and Viscosity of Fe3O4 Nanofluid for Heat Transfer Applications
,”
Int. Commun. Heat Mass Transf.
,
44
, pp.
7
14
. 10.1016/j.icheatmasstransfer.2013.02.014
30.
Duangthongsuk
,
W.
, and
Wongwises
,
S.
,
2009
, “
Measurement of Temperature-Dependent Thermal Conductivity and Viscosity of TiO2-Water Nanofluids
,”
Exp. Therm. Fluid Sci.
,
33
(
4
), pp.
706
714
. 10.1016/j.expthermflusci.2009.01.005
31.
Fadhilah
,
S. A.
,
Hidayah
,
I.
,
Hilwa
,
M. Z.
,
Faizah
,
H. N.
, and
Marhamah
,
R. S.
,
2013
, “
Thermophysical Properties of Copper/Water Nanofluid for Automotive Cooling System—Mathematical Modeling
,”
J. Mech. Eng. Technol.
,
5
(
2
), pp.
27
39
.
32.
De Vita
,
A.
,
Maheshwari
,
A.
,
Destro
,
M.
,
Santarelli
,
M.
, and
Carello
,
M.
,
2017
, “
Transient Thermal Analysis of a Lithium-Ion Battery Pack Comparing Different Cooling Solutions for Automotive Applications
,”
Appl. Energy
,
206
, pp.
101
112
. 10.1016/j.apenergy.2017.08.184
33.
Tao
,
L.
,
Study on Thermal Effects of Lithium-Ion Battery in Electric Vehicle and Battery Package Dissipation Structural Optimization
,
Chongqing University
,
Chongqing, China
.
34.
Wang
,
T.
,
Tseng
,
K. J.
, and
Zhao
,
J.
,
2015
, “
Development of Efficient Air-Cooling Strategies for Lithium-Ion Battery Module Based on Empirical Heat Source Model
,”
Appl. Therm. Eng.
,
90
, pp.
521
529
. 10.1016/j.applthermaleng.2015.07.033
35.
Ye
,
B.
,
Rubel
,
M. R. H.
, and
Li
,
H.
,
2019
, “
Design and Optimization of Cooling Plate for Battery Module of an Electric Vehicle
,”
Appl. Sci.
,
9
(
4
), pp.
754
774
. 10.3390/app9040754
36.
Saw
,
L. H.
,
Ye
,
Y.
,
Tay
,
A. A. O.
,
Chong
,
W. T.
,
Kuan
,
S. H.
, and
Yew
,
M. C.
,
2016
, “
Computational Fluid Dynamic and Thermal Analysis of Lithium-Ion Battery Pack With Air Cooling
,”
Appl. Energy
,
177
, pp.
783
792
. 10.1016/j.apenergy.2016.05.122
37.
Shahid
,
S.
, and
Agelin-Chaab
,
M.
,
2017
, “
Analysis of Cooling Effectiveness and Temperature Uniformity in a Battery Pack for Cylindrical Batteries
,”
Energies
,
10
(
8
), pp.
1157
1174
. 10.3390/en10081157
38.
Fazeli
,
S. A.
,
Hosseini Hashemi
,
S. M.
,
Zirakzadeh
,
H.
, and
Ashjaee
,
M.
,
2012
, “
Experimental and Numerical Investigation of Heat Transfer in a Miniature Heat Sink Utilizing Silica Nanofluid
,”
Superlattices Microstruct.
,
51
(
2
), pp.
247
264
. 10.1016/j.spmi.2011.11.017
39.
Ruhatiya
,
C.
,
Singh
,
S.
,
Goyal
,
A.
,
Niu
,
X.
,
Nguyen
,
H.
,
Ngoc
,
T.
,
Nguyen
,
V. H.
,
Tran
,
V. M.
,
Phung
,
L. E.
,
Loan
,
M.
, and
Garg
,
A.
,
2020
, “
Electrochemical Performance Enhancement of Sodium-Ion Batteries Fabricated With NaNi1/3Mn1/3Co1/3O2 Cathodes Using Support Vector Regression-Simplex Algorithm Approach
,”
J. Electrochem. Energy Convers. Storage
,
17
(
1
), pp.
1
20
. 10.1115/1.4044358
40.
Jiang
,
D.
,
Wu
,
K.
,
Chen
,
D.
,
Tu
,
G.
,
Zhou
,
T.
,
Garg
,
A.
, and
Gao
,
L.
,
2020
, “
A Probability and Integrated Learning Based Classification Algorithm for High-Level Human Emotion Recognition Problems
,”
Measurement
,
150
, p.
107049
. 10.1016/j.measurement.2019.107049
41.
Li
,
W.
,
Chen
,
S.
,
Peng
,
X.
,
Xiao
,
M.
,
Gao
,
L.
,
Garg
,
A.
, and
Bao
,
N.
,
2019
, “
A Comprehensive Approach for the Clustering of Similar-Performance Cells for the Design of a Lithium-Ion Battery Module for Electric Vehicles
,”
Engineering
,
5
(
4
), pp.
795
802
. 10.1016/j.eng.2019.07.005
You do not currently have access to this content.