Abstract

Lithium-ion batteries (LIBs) inevitably encounter abusive mechanical loading during engineering applications and result in mechanical deformation, internal short circuit, and even thermal runaway. A 18650 LIB under minor mechanical deformation is subjected to cyclic charge/discharge experiments in this study to analyze its aging behavior. Aging mechanism of the battery with minor deformation is qualitatively investigated through the incremental capacity analysis (ICA). ICA, a commonly used method for exploring degradation mechanism of LIBs, can transform flat voltage plateaus into peaks in the capacity increase curve (IC curve). Experimental data during the battery charging/discharging cycle can be used to calculate the IC curve, which can reflect the characteristics of electrochemical changes inside the battery. Results showed that the LIB suffers from deterioration in the state of health (SOH) in the entire charge/discharge cycle upon minor mechanical deformation. Possible explanations for the slight decrease in SOH with the increasing number of cycles in the early stages and the rapid decrease in the charge/discharge capacity in the late stages were provided. However, precise mechanisms for these phenomena require further detailed research. Moreover, damaged cells demonstrate considerably higher temperature increments than original ones. This temperature difference will increase if additional charging/discharging cycles are conducted. This research infers that additional metallic lithium deposits in damaged cells compared with the original ones cause serious exothermic reactions and lead to enhanced heat accumulation.

References

1.
Lu
,
L.
,
Han
,
X.
,
Li
,
J.
,
Hua
,
J.
, and
Ouyang
,
M.
,
2013
, “
A Review on the Key Issues for Lithium-Ion Battery Management in Electric Vehicles
,”
J. Power Sources
,
226
(
3
), pp.
272
288
. 10.1016/j.jpowsour.2012.10.060
2.
Xu
,
J.
,
Jia
,
Y.
,
Liu
,
B.
,
Zhao
,
H.
,
Yu
,
H.
,
Li
,
J.
, and
Yin
,
S.
,
2018
, “
Coupling Effect of State-of-Health and State-of-Charge on the Mechanical Integrity of Lithium-Ion Batteries
,”
Exp. Mech.
,
58
(
4
), pp.
633
643
. 10.1007/s11340-018-0380-9
3.
Han
,
X.
,
Lu
,
L.
,
Zheng
,
Y.
,
Feng
,
X.
,
Li
,
Z.
,
Li
,
J.
, and
Ouyang
,
M.
,
2019
, “
A Review on the Key Issues of the Lithium Ion Battery Degradation Among the Whole Life Cycle
,”
eTransportation
,
1
. 10.1016/j.etran.2019.100005
4.
Liu
,
B.
,
Jia
,
Y.
,
Yuan
,
C.
,
Wang
,
L.
,
Gao
,
X.
,
Yin
,
S.
, and
Xu
,
J.
,
2020
, “
Safety Issues and Mechanisms of Lithium-Ion Battery Cell Upon Mechanical Abusive Loading: A Review
,”
Energy Storage Mater.
,
24
(
24
), pp.
85
112
. 10.1016/ j.ensm. 2019.06.036
5.
Gao
,
Z.
,
Zhang
,
X.
,
Xiao
,
Y.
,
Gao
,
H.
,
Wang
,
H.
, and
Piao
,
C.
,
2019
, “
Influence of Low-Temperature Charge on the Mechanical Integrity Behavior of 18650 Lithium-Ion Battery Cells Subject to Lateral Compression
,”
Energies
,
12
(
5
), p.
797
. 10.3390/en12050797
6.
Zhang
,
C.
,
Xu
,
J.
,
Cao
,
L.
,
Wu
,
Z.
, and
Santhanagopalan
,
S.
,
2017
, “
Constitutive Behavior and Progressive Mechanical Failure of Electrodes in Lithium-Ion Batteries
,”
J. Power Sources
,
357
(
7
), pp.
126
137
. 10.1016/j.jpowsour.2017.04.103
7.
Xu
,
J.
,
Liu
,
B.
,
Wang
,
L.
, and
Shang
,
S.
,
2015
, “
Dynamic Mechanical Integrity of Cylindrical Lithium-Ion Battery Cell Upon Crushing
,”
Eng. Failure Anal.
,
53
(
7
), pp.
97
110
. 10.1016/j.engfailanal.2015.03.025
8.
Xu
,
J.
,
Liu
,
B.
,
Wang
,
X.
, and
Hu
,
D.
,
2016
, “
Computational Model of 18650 Lithium-Ion Battery With Coupled Strain Rate and SOC Dependencies
,”
Appl. Energy
,
172
(
6
), pp.
180
189
. 10.1016/j.apenergy.2016.03.108
9.
Jia
,
Y.
, and
Xu
,
J.
,
2020
, “
Modeling of Thermal Propagation Based on Two Cylindrical Lithium-Ion Cells
,”
ASME J. Electrochem. Energy Convers. Storage
,
17
(
2
), p.
021105
. 10.1115/1.4045199
10.
Liu
,
B.
,
Jia
,
Y.
,
Li
,
J.
,
Yin
,
S.
,
Yuan
,
C.
,
Hu
,
Z.
,
Wang
,
L.
,
Li
,
Y.
, and
Xu
,
J.
,
2018
, “
Safety Issues Caused by Internal Short Circuits in Lithium-Ion Batteries
,”
J. Mater. Chem.
,
6
(
43
), pp.
21475
21484
. 10.1039/C8TA08997C
11.
Liu
,
B.
,
Zhang
,
J.
,
Zhang
,
C.
, and
Xu
,
J.
,
2018
, “
Mechanical Integrity of 18650 Lithium-Ion Battery Module: Packing Density and Packing Mode
,”
Eng. Failure Anal.
,
91
(
9
), pp.
315
326
. 10.1016/j.engfailanal.2018. 04.041
12.
Yuan
,
C.
,
Gao
,
X.
,
Wong
,
H. K.
,
Feng
,
B.
, and
Xu
,
J.
,
2019
, “
A Multiphysics Computational Framework for Cylindrical Battery Behavior Upon Mechanical Loading Based on LS-DYNA
,”
J. Electrochem. Soc.
,
166
(
6
), pp.
A1160
A1169
. 10.1149/2.1071906jes
13.
Wang
,
L.
,
Yin
,
S.
, and
Xu
,
J.
,
2019
, “
A Detailed Computational Model for Cylindrical Lithium-Ion Batteries Under Mechanical Loading: From Cell Deformation to Short-Circuit Onset
,”
J. Power Sources
,
413
(
2
), pp.
284
292
. 10.1016/j.jpowsour.2018.12.059
14.
Chen
,
X.
,
Yuan
,
Q.
,
Wang
,
T.
,
Ji
,
H.
,
Ji
,
Y.
,
Li
,
L.
, and
Liu
,
Y.
,
2020
, “
Experimental Study on the Dynamic Behavior of Prismatic Lithium-Ion Battery Upon Repeated Impact
,”
Eng. Fail. Anal.
,
115
(
9
), p.
104667
. 10.1016/ j.engfailanal. 2020.104667
15.
Liu
,
B.
,
Zhao
,
H.
,
Yu
,
H.
,
Li
,
J.
, and
Xu
,
J.
,
2017
, “
Multiphysics Computational Framework for Cylindrical Lithium-Ion Batteries Under Mechanical Abusive Loading
,”
Electrochim. Acta
,
256
(
10
), pp.
172
184
. 10.1016/j.electacta.2017.10.045
16.
Chen
,
X.
,
Wang
,
T.
,
Zhang
,
Y.
,
Ji
,
H.
,
Ji
,
Y.
,
Yuan
,
Q.
, and
Li
,
L.
,
2020
, “
Dynamic Behavior and Modeling of Prismatic Lithium-Ion Battery
,”
Int. J. Energy Res.
,
44
(
4
), pp.
2984
2997
. 10.1002/er.5126
17.
Gilaki
,
M.
, and
Avdeev
,
I.
,
2016
, “
Impact Modeling of Cylindrical Lithium-Ion Battery Cells: A Heterogeneous Approach
,”
J. Power Sources
,
328
(
10
), pp.
443
451
. 10.1016/j.jpowsour.2016.08.034
18.
Zhang
,
C.
,
Santhanagopalan
,
S.
,
Sprague
,
M. A.
, and
Pesaran
,
A.
,
2015
, “
A Representative-Sandwich Model for Simultaneously Coupled Mechanical-Electrical-Thermal Simulation of a Lithium-Ion Cell Under Quasi-Static Indentation Tests
,”
J. Power Sources
,
298
(
11
), pp.
309
321
. 10.1016/j.jpowsour.2015.08.049
19.
Zhang
,
C.
,
Santhanagopalan
,
S.
,
Sprague
,
M. A.
, and
Pesaran
,
A.
,
2015
, “
Coupled Mechanical-Electrical-Thermal Modeling for Short-Circuit Prediction in a Lithium-Ion Cell Under Mechanical Abuse
,”
J. Power Sources
,
290
(
9
), pp.
102
113
. 10.1016/j.jpowsour.2015.04.162
20.
Chen
,
X.
,
Wang
,
T.
,
Zhang
,
Y.
,
Ji
,
H.
,
Ji
,
Y.
, and
Yuan
,
Q.
,
2019
, “
Dynamic Mechanical Behavior of Prismatic Lithium-Ion Battery Upon Impact
,”
Int. J. Energy Res.
,
43
(
6
), pp.
7421
7432
. 10.1002/er.4774
21.
Xu
,
J.
,
Liu
,
B.
, and
Hu
,
D.
,
2016
, “
State of Charge Dependent Mechanical Integrity Behavior of 18650 Lithium-Ion Batteries
,”
Sci. Rep.
,
6
(
1
), pp.
21829
21829
. 10.1038/srep21829
22.
Li
,
W.
,
Xia
,
Y.
,
Chen
,
G.
, and
Sahraei
,
E.
,
2018
, “
Comparative Study of Mechanical-Electrical-Thermal Responses of Pouch, Cylindrical, and Prismatic Lithium-Iion Cells Under Mechanical Abuse
,”
Sci. China Technol. Sci.
,
61
(
10
), pp.
1472
1482
. 10.1007/s11431-017-9296-0
23.
Birkl
,
C. R.
,
Roberts
,
M. R.
,
McTurk
,
E.
,
Bruce
,
P. G.
, and
Howey
,
D. A.
,
2017
, “
Degradation Diagnostics for Lithium ion Cells
,”
J. Power Sources
,
341
(
2
), pp.
373
386
. 10.1016/j.jpowsour.2016.12.011
24.
Richardson
,
R. R.
,
Osborne
,
M. A.
, and
Howey
,
D. A.
,
2017
, “
Gaussian Process Regression for Forecasting Battery State of Health
,”
J. Power Sources
,
357
(
7
), pp.
209
219
. 10.1016/j.jpowsour.2017.05.004
25.
Dai
,
H.
,
Zhao
,
G.
,
Lin
,
M.
,
Wu
,
J.
, and
Zheng
,
G.
,
2019
, “
A Novel Estimation Method for the State of Health of Lithium-Ion Battery Using Prior Knowledge-Based Neural Network and Markov Chain
,”
IEEE Trans. Ind. Electron.
,
66
(
10
), pp.
7706
7716
. 10.1109/TIE.2018.2880703
26.
Li
,
X.
,
Wang
,
Z.
, and
Yan
,
J.
,
2019
, “
Prognostic Health Condition for Lithium Battery Using the Partial Incremental Capacity and Gaussian Process Regression
,”
J. Power Sources
,
421
(
5
), pp.
56
67
. 10.1016/j.jpowsour.2019.03.008
27.
Dong
,
G.
,
Chen
,
Z.
,
Wei
,
J.
, and
Ling
,
Q.
,
2018
, “
Battery Health Prognosis Using Brownian Motion Modeling and Particle Filtering
,”
IEEE Trans. Ind. Electron.
,
65
(
11
), pp.
8646
8655
. 10.1109/TIE.2018.2813964
28.
Yang
,
D.
,
Zhang
,
X.
,
Pan
,
R.
,
Wang
,
Y.
, and
Chen
,
Z.
,
2018
, “
A Novel Gaussian Process Regression Model for State-of-Health Estimation of Lithium-Ion Battery Using Charging Curve
,”
J. Power Sources
,
384
(
4
), pp.
387
395
. 10.1016/j.jpowsour.2018.03.015
29.
Wei
,
J.
,
Dong
,
G.
, and
Chen
,
Z.
,
2018
, “
Remaining Useful Life Prediction and State of Health Diagnosis for Lithium-Ion Batteries Using Particle Filter and Support Vector Regression
,”
IEEE Trans. Ind. Electron.
,
65
(
7
), pp.
5634
5643
. 10.1109/TIE.2017.2782224
30.
Rezvanizaniani
,
S. M.
,
Liu
,
Z.
,
Chen
,
Y.
, and
Lee
,
J.
,
2014
, “
Review and Recent Advances in Battery Health Monitoring and Prognostics Technologies for Electric Vehicle (EV) Safety and Mobility
,”
J. Power Sources
,
256
(
12
), pp.
110
124
. 10.1016/j.jpowsour.2014.01.085
31.
Zhang
,
Q.
, and
White
,
R. E.
,
2007
, “
Calendar Life Study of Li-Ion Pouch Cells
,”
J. Power Sources
,
173
(
2
), pp.
990
997
. 10.1016/j.jpowsour.2007.08.044
32.
Ouyang
,
M.
,
Ren
,
D.
,
Lu
,
L.
,
Li
,
J.
,
Feng
,
X.
,
Han
,
X.
, and
Liu
,
G.
,
2015
, “
Overcharge-Induced Capacity Fading Analysis for Large Format Lithium-Ion Batteries With LiyNi1/3Co1/3Mn1/3O2 + LiyMn2O4 Composite Cathode
,”
J. Power Sources
,
279
(
4
), pp.
626
635
. 10.1016/j.jpowsour.2015.01.051
33.
Fan
,
G.
,
Pan
,
K.
,
Canova
,
M.
,
Marcicki
,
J.
, and
Yang
,
X. G.
,
2016
, “
Modeling of Li-Ion Cells for Fast Simulation of High C-Rate and Low Temperature Operations
,”
J. Electrochem. Soc
,
163
(
5
), pp.
A666
A676
. 10.1149/2.0761605jes
34.
Waldmann
,
T.
,
Wilka
,
M.
,
Kasper
,
M.
,
Fleischhammer
,
M.
, and
Wohlfahrt-Mehrens
,
M.
,
2014
, “
Temperature Dependent Ageing Mechanisms in Lithium-Ion Batteries—A Post-Mortem Study
,”
J. Power Sources
,
262
(
9
), pp.
129
135
. 10.1016/j.jpowsour.2014.03.112
35.
Schimpe
,
M.
,
Von Kuepach
,
M. E.
,
Naumann
,
N.
,
Hesse
,
H. C.
,
Smith
,
K.
, and
Jossen
,
A.
,
2018
, “
Comprehensive Modeling of Temperature-Dependent Degradation Mechanisms in Lithium Iron Phosphate Batteries
,”
J. Electrochem. Soc.
,
165
(
2
), pp.
A181
A193
. 10.1149/2.1181714jes
36.
Taniguchi
,
S.
,
Shironita
,
S.
,
Konakawa
,
K.
,
Mendoza-Hernandez
,
O. S.
,
Sone
,
Y.
, and
Umeda
,
M.
,
2019
, “
Thermal Characteristics of 80 °C Storage-Degraded 18650-Type Lithium-Ion Secondary Cells
,”
J. Power Sources
,
416
(
3
), pp.
148
154
. 10.1016/j.jpowsour.2019.01.087
37.
Guo
,
R.
,
Lu
,
L.
,
Ouyang
,
M.
, and
Feng
,
X.
,
2016
, “
Mechanism of the Entire Over discharge Process and Over Discharge-Induced Internal Short Circuit in Lithium-Ion Batteries
,”
Sci. Rep.
,
6
(
1
), pp.
30248
30248
. 10.1038/srep30248
38.
Liu
,
J.
,
Duan
,
Q.
,
Ma
,
M.
,
Zhao
,
C.
,
Sun
,
J.
, and
Wang
,
Q.
,
2020
, “
Aging Mechanisms and Thermal Stability of Aged Commercial 18650 Lithium Ion Battery Induced by Slight Overcharging Cycling
,”
J. Power Sources.
,
445
(
1
), pp.
227263.1
227263.9
.
39.
Qian
,
K.
,
Li
,
Y.
,
He
,
Y.
,
Liu
,
D.
,
Zheng
,
Y.
,
Dan
,
L.
,
Li
,
B.
, and
Kang
,
F.
,
2016
, “
Abuse Tolerance Behavior of Layered Oxide-Based Li-Ion Battery During Overcharge and Over-Discharge
,”
RSC Adv.
,
6
(
80
), pp.
76897
76904
. 10.1039/C6RA11288A
40.
Fleischhammer
,
M.
,
Waldmann
,
T.
,
Bisle
,
G.
,
Hogg
,
B.
, and
Wohlfahrt-Mehrens
,
M.
,
2015
, “
Interaction of Cyclic Ageing at High-Rate and Low Temperatures and Safety in Lithium-Ion Batteries
,”
J. Power Sources
,
274
(
1
), pp.
432
439
. 10.1016/j.jpowsour.2014.08.135
41.
Ji
,
Y.
,
Chen
,
X.
,
Wang
,
T.
,
Ji
,
H.
,
Zhang
,
Y.
,
Yuan
,
Q.
, and
Li
,
L.
,
2020
, “
Coupled Effects of Charge-Discharge Cycles and Rates on the Mechanical Behavior of Electrodes in Lithium-Ion Batteries
,”
J. Energy Storage
,
30
(
8
), p.
101577
. 10.1016/j.est.2020.101577
42.
Dubarry
,
M.
,
Truchot
,
C.
, and
Liaw
,
B. Y.
,
2012
, “
Synthesize Battery Degradation Modes via a Diagnostic and Prognostic Model
,”
J. Power Sources
,
219
(
11
), pp.
204
216
. 10.1016/j.jpowsour.2012.07.016
43.
Dubarry
,
M.
,
Svoboda
,
V.
,
Hwu
,
R.
, and
Yann Liaw
,
B.
,
2006
, “
Incremental Capacity Analysis and Close-to-Equilibrium OCV Measurements to Quantify Capacity Fade in Commercial Rechargeable Lithium Batteries
,”
Electrochem. Solid-State Lett.
,
9
(
10
), pp.
A454
A457
. 10.1149/1.2221767
44.
Ansean
,
D.
,
Garcia
,
V.
,
Gonzalez
,
M.
,
Blanco-Viejo
,
C.
,
Viera
,
J. C.
,
Pulido
,
Y. F.
, and
Sanchez
,
L.
,
2019
, “
Lithium-Ion Battery Degradation Indicators via Incremental Capacity Analysis
,”
IEEE Trans. Ind. Appl.
,
55
(
3
), pp.
2992
3002
. 10.1109/TIA.2019.2891213
45.
Dubarry
,
M.
,
Truchot
,
C.
,
Liaw
,
B. Y.
,
Gering
,
K.
,
Sazhin
,
S.
,
Jamison
,
D.
, and
Michelbacher
,
C.
,
2011
, “
Evaluation of Commercial Lithium-Ion Cells Based on Composite Positive Electrode for Plug-In Hybrid Electric Vehicle Applications. Part II. Degradation Mechanism Under 2 C Cycle Aging
,”
J. Power Sources
,
196
(
23
), pp.
10336
10343
. 10.1016/j.jpowsour.2011.08.078
46.
Li
,
Y.
,
Abdel-Monem
,
M.
,
Gopalakrishnan
,
R.
,
Berecibar
,
M.
,
Nanini-Maury
,
E.
,
Omar
,
N.
,
van den Bossche
,
P.
, and
Van Mierlo
,
J.
,
2018
, “
A Quick On-Line State of Health Estimation Method for Li-Ion Battery With Incremental Capacity Curves Processed by Gaussian Filter
,”
J. Power Sources
,
373
(
1
), pp.
40
53
. 10.1016/j.jpowsour.2017.10.092
47.
Jiang
,
B.
,
Dai
,
H.
, and
Wei
,
X.
,
2020
, “
Incremental Capacity Analysis Based Adaptive Capacity Estimation for Lithium-Ion Battery Considering Charging Condition
,”
Appl. Energy
,
269
(
7
), p.
115074
. 10.1016/j.apenergy.2020. 115074
48.
Tian
,
J.
,
Xiong
,
R.
, and
Yu
,
Q.
,
2019
, “
Fractional-Order Model-Based Incremental Capacity Analysis for Degradation State Recognition of Lithium-Ion Batteries
,”
IEEE Trans. Ind. Electron.
,
66
(
2
), pp.
1576
1584
. 10.1109/TIE.2018.2798606
49.
Carlos
,
P.
,
Kotub
,
U.
,
Gael
,
H. C.
,
Widanage
,
D. W.
, and
James
,
M.
,
2017
, “
A Comparison Between Electro-Chemical Impedance Spectroscopy and Incremental Capacity-Differential Voltage as Li-Ion Diagnostic Techniques to Identify and Quantify the Effects of Degradation Modes Within Battery Management Systems
,”
J. Power Sources
,
360
(
8
), pp.
301
318
. 10.1016/j.jpowsour.2017.03.042
50.
Eddahech
,
A.
,
Briat
,
O.
, and
Vinassa
,
J.
,
2013
, “
Lithium-Ion Battery Performance Improvement Based on Capacity Recovery Exploitation
,”
Electrochim. Acta
,
114
(
11
), pp.
750
757
. 10.1016/j.electacta.2013.10.101
51.
Wood
,
D. L.
,
Li
,
J.
, and
Daniel
,
C.
,
2015
, “
Prospects for Reducing the Processing Cost of Lithium Ion Batteries
,”
J. Power Sources
,
275
(
2
), pp.
234
242
. 10.1016/j.jpowsour.2014.11.019
52.
Yoon
,
S.-Y.
, and
Iocco
,
R.
,
2010
, U.S. Patent Application 12/558,091, A123 Systems, Inc.
53.
Yang
,
X.
,
Leng
,
Y.
,
Zhang
,
G.
,
Ge
,
S.
, and
Wang
,
C.
,
2017
, “
Modeling of Lithium Plating Induced Aging of Lithium-Ion Batteries: Transition From Linear to Nonlinear Aging
,”
J. Power Sources
,
360
(
8
), pp.
28
40
. 10.1016/j.jpowsour.2017.05.110
54.
Joonam
,
P.
,
Williams
,
A.
,
Seoungwoo
,
B.
,
Dahee
,
J.
,
Myung-Hyun
,
R.
, and
Yong
,
M.
,
2017
, “
Semi-Empirical Long-Term Cycle Life Model Coupled With an Electrolyte Depletion Function for Large-Format Graphite/LiFePO4 Lithium-Ion Batteries
,”
J. Power Sources
,
365
(
10
), pp.
257
265
. 10.1016/j.jpowsour.2017.08.094
55.
Leng
,
F.
,
Wei
,
Z.
,
Tan
,
C. M.
, and
Yazami
,
R.
,
2017
, “
Hierarchical Degradation Processes in Lithium-Ion Batteries During Ageing
,”
Electrochim. Acta
,
256
(
11
), pp.
52
62
. 10.1016/j.electacta.2017.10.007
You do not currently have access to this content.