Abstract

Lead-plated tin-bronze mesh was adopted as the negative grid to assembly 2V-DZM-20Ah lead-acid battery. Compared with the conventional negative plate, the weight of each tin-bronze plate was reduced by about 17 g, the weight of the single cell was reduced by 13.67%, and the mass specific capacity of the single cell was increased by about 7 Wh · kg−1. The sulfation of the negative side was suppressed due to the high electronic conductivity of bronze-based negative plate. The failure expansion of the positive side was also restricted due to the strong negative structure. The dissembled negative grid of lead-plated tin bronze after 450 cycles of 100% discharge of degree was still intact and dense. After the dissembled negative grid was reassembled into a 2-V single cell, the battery exhibited similar performance to that with a new one. Generally speaking, the direct re-usability of tin-bronze-based grid sharply simplifies the grid recovery and opens a greatly attracting direction for developing lightweight, high-energy technique of lead-acid batteries.

References

1.
Jilte
,
R.
,
Afzal
,
A.
, and
Panchal
,
S.
,
2021
, “
A Novel Battery Thermal Management System Using Nano-enhanced Phase Change Materials
,”
Energy
,
219
(
1
), p.
119564
.
2.
Mevawalla
,
A.
,
Panchal
,
S.
,
Tran
,
M. K.
,
Fowler
,
M.
, and
Fraser
,
R.
,
2020
, “
Mathematical Heat Transfer Modeling and Experimental Validation of Lithium-Ion Battery Considering: Tab and Surface Temperature, Separator, Electrolyte Resistance, Anode-Cathode Irreversible and Reversible Heat
,”
Batteries
,
6
(
4
), p.
61
.
3.
Tran
,
M. K.
,
Akinsanya
,
M.
,
Panchal
,
S.
,
Fraser
,
R.
, and
Fowler
,
M.
,
2021
, “
Design of a Hybrid Electric Vehicle Powertrain for Performance Optimization Considering Various Powertrain Components and Configurations
,”
Vehicles
,
3
(
1
), pp.
20
32
.
4.
Vargonen
,
M. M.
,
2015
, “
Modeling the Impact of Paste Additives and Pellet Geometry on Paste Utilization Within Lead Acid Batteries During Low Rate Discharges
,”
J. Power Sources
,
273
(
1
), pp.
317
323
.
5.
Lam
,
L. T.
,
Haigh
,
N. P.
,
Phyland
,
C. G.
, and
Urban
,
A. J.
,
2004
, “
Failure Mode of Valve-Regulated Lead-Acid Batteries Under High-Rate Partial-State-of-Charge Operation
,”
J. Power Sources
,
133
(
1
), pp.
126
134
.
6.
Rahmanifar
,
M. S.
,
2017
, “
Enhancing the Cycle Life of Lead-Acid Batteries by Modifying Negative Grid Surface
,”
Electrochim. Acta
,
235
(
1
), pp.
10
18
.
7.
Panchal
,
S.
,
Dincer
,
I.
,
Agelin-Chaab
,
M.
,
Fraser
,
R.
, and
Fowler
,
M.
,
2016
, “
Experimental and Theoretical Investigations of Heat Generation Rates for a Water Cooled LiFePO4 Battery
,”
Int. J. Heat Mass Transfer
,
101
(
1
), pp.
1093
1102
.
8.
Yolshina
,
L. A.
,
Kudyakov
,
V. Y.
, and
Zyryanov
,
V. G.
,
1999
, “
A Lead-Film Electrode on an Aluminium Substrate to Serve as a Lead-Acid Battery Plate
,”
J. Power Sources
,
78
(
1–2
), pp.
84
87
.
9.
Dai
,
C. S.
,
Zhang
,
B.
,
Wang
,
D. L.
,
Yi
,
T. F.
, and
Hu
,
X. G.
,
2006
, “
Preparation and Performance of Lead Foam Grid for Negative Electrode of VRLA Battery
,”
J. Power Sources
,
99
(
2–3
), pp.
431
436
.
10.
Jullian
,
E.
,
Albert
,
L.
, and
Caillerie
,
J.
,
2003
, “
New Lead Alloys for High-Performance Lead-Acid Batteries
,”
J. Power Sources
,
116
(
1–2
), pp.
185
192
.
11.
Tan
,
S.
,
Payne
,
D. J.
,
Hallett
,
J. P.
, and
Kelsall
,
G. H.
,
2019
, “
Developments in Electrochemical Processes for Recycling Lead-Acid Batteries
,”
Curr. Opin. Electrochem.
,
16
(
1
), pp.
83
89
.
12.
Varshney
,
K.
,
Varshney
,
P. K.
,
Gautam
,
K.
,
Tanwar
,
M.
, and
Chaudhary
,
M.
,
2020
, “
Current Trends and Future Perspectives in the Recycling of Spent Lead Acid Batteries in India
,”
Mater. Today: Proc.
,
26
(
2
), pp.
592
602
.
13.
Rosa
,
D. M.
,
Spinelli
,
J. E.
,
Osório
,
W. R.
, and
Garcia
,
A.
,
2006
, “
Effects of Cell Size and Macrosegregation on the Corrosion Behavior of a Dilute Pb-Sb Alloy
,”
J. Power Sources
,
162
(
1
), pp.
696
705
.
14.
Tang
,
L. P.
,
Li
,
A. J.
,
Chen
,
H. Y.
,
Li
,
H.
,
Chen
,
Q.
,
Zhou
,
H. W.
,
Wei
,
W. W.
,
Zhang
,
W.
,
Hu
,
J.
,
Dou
,
C. L.
,
Wang
,
H.
, and
Finlow
,
D.
,
2011
, “
The Electrochemical Performances of a Novel Lead-Sodium Binary Grid Alloy for Lead-Acid Batteries
,”
Electrochim. Acta
,
56
(
12
), pp.
4566
4570
.
15.
Lannelongue
,
J.
,
Cugnet
,
M.
,
Guillet
,
N.
,
De Vito
,
E.
,
Boulineau
,
A.
, and
Kirchev
,
A.
,
2018
, “
Operation of Thin-Plate Positive Lead-Acid Battery Electrodes Employing Titanium Current Collectors
,”
J. Energy Storage
,
20
(
3
), pp.
230
243
.
16.
Lannelongue
,
J.
,
Cugnet
,
M.
,
Guillet
,
N.
, and
Kirchev
,
A.
,
2017
, “
Electrochemistry of Thin-Plate Lead-Carbon Batteries Employing Alternative Current Collectors
,”
J. Power Sources
,
352
(
1
), pp.
194
207
.
17.
Pavlov
,
D.
,
Petkova
,
G.
,
Dimitrov
,
M.
,
Shiomi
,
M.
, and
Tsubota
,
M.
,
2000
, “
Influence of Fast Charge on the Life Cycle of Positive Lead-Acid Battery Plates
,”
J. Power Sources
,
87
(
1–2
), pp.
39
56
.
18.
Perrin
,
M.
,
Döring
,
H.
,
Ihmels
,
K.
,
Weiss
,
A.
,
Vogel
,
E.
, and
Wagner
,
R.
,
2001
, “
Effect of Compression on the Behaviour of Lead-Acid Batteries
,”
J. Power Sources
,
95
(
1–2
), pp.
85
96
.
19.
Franke
,
M.
, and
Kowal
,
J.
,
2018
, “
Empirical Sulfation Model for Valve-Regulated Lead-Acid Batteries Under Cycling Operation
,”
J. Power Sources
,
380
(
15
), pp.
76
82
.
20.
Snyders
,
C.
,
Ferg
,
E. E.
, and
van Dyl
,
T.
,
2012
, “
The Use of a Polymat Material to Reduce the Effects of Sulphation Damage Occurring in Negative Electrodes due to the Partial State of Charge Capacity Cycling of Lead Acid Batteries
,”
J. Power Sources
,
200
(
15
), pp.
102
107
.
21.
Guo
,
Y. L.
,
Niu
,
L.
,
Zhang
,
S. Y.
, and
Chen
,
S. H.
,
2000
, “
The Electrochemical Behavior of PbSO4 With Different Structures on Pb
,”
J. Power Sources
,
85
(
1
), pp.
38
43
.
22.
Alkaine
,
C. D.
,
Souza
,
L. M.
, and
Brito
,
G. A. de O.
,
2012
, “
Solid State Reactions at Metal/Film Interfaces: The Case of the Pb/PbSO4 Interface
,”
J. Power Sources
,
210
(
15
), pp.
218
223
.
23.
Zhang
,
B.
,
Zhong
,
J. H.
,
Li
,
W. J.
,
Dai
,
Z. Y.
,
Zhang
,
B.
, and
Cheng
,
Z. M.
,
2010
, “
Transformation of Inert PbSO4 Deposit on the Negative Electrode of a Lead-Acid Battery Into Its Active State
,”
J. Power Sources
,
195
(
13
), pp.
4338
4343
.
24.
Moseley
,
P. T.
, and
Prengaman
,
R. D.
,
2002
, “
In Pursuit of High Specific Energy, High Specific Power Valve-Regulated Lead-Acid Batteries
,”
J. Power Sources
,
107
(
1–2
), pp.
240
244
.
25.
Büngeler
,
J.
,
Cattaneo
,
E.
,
Riegel
,
B.
, and
Sauer
,
D. U.
,
2018
, “
Advantages in Energy Efficiency of Flooded Lead-Acid Batteries When Using Partial State of Charge Operation
,”
J. Power Sources
,
375
(
31
), pp.
53
58
.
You do not currently have access to this content.