Abstract

The major obstacle prohibiting the practical application of Sn-based anodes is drastic volume variation during cycling processes. Here, polyacrylonitrile (PAN) was acted as a carbon source, and stannic chloride pentahydrate (SnCl4·5H2O) and antimony chloride (SbCl3) were used as SnSb precursors. SnSb/C nanofibers were prepared via simple electrospinning, deep cryogenic treatment, and carbonization, and it is applied in anode materials for lithium-ion batteries (LIBs) to achieve excellent cycle performance (115.5% capacity retention for 100 cycles). The improvement of electrochemical performance is mainly attributed to the synergistic effect of deep cryogenic treated special SnSb/C nanofibers precursor. In the deep cryogenic treatment process, the crystalline water in the precursor has a pore-forming effect, and the porous nanofiber structure leads to the phenomenon of capacity increase. The above results indicate that comprehensive consideration of deep cryogenic treatment and nanofiber precursors is a new idea to enhance the electrochemical performance of LIBs anode materials.

References

1.
Nithyadharseni
,
P.
,
Reddy
,
M. V.
,
Nalini
,
B.
,
Kalpana
,
M.
, and
Chowdari
,
B. V. R.
,
2015
, “
Sn-Based Intermetallic Alloy Anode Materials for the Application of Lithium Ion Batteries
,”
Electrochim. Acta
,
161
, pp.
261
268
.
2.
Zhang
,
J. Y.
,
Wang
,
Z. Y.
,
Hong
,
Y. Z.
,
Li
,
S. X.
,
Jin
,
X. B.
, and
Chen
,
G. Z.
,
2014
, “
Electrochemical Fabrication of Porous Sn/SnSb Negative Electrodes From Mixed SnO2-Sb2O3
,”
Electrochem. Commun.
,
38
, pp.
36
39
.
3.
Park
,
C. M.
, and
Jeon
,
K. J.
,
2011
, “
Porous Structured SnSb/C Nanocomposites for Li-Ion Battery Anodes
,”
Chem. Commun.
,
47
(
7
), pp.
2122
2124
.
4.
Liao
,
B.
,
Lei
,
Y. Q.
,
Chen
,
L. X.
,
Lu
,
G. L.
,
Pan
,
H. G.
, and
Wang
,
Q. D.
,
2004
, “
A Study on the Structure and Electrochemical Properties of La2Mg(Ni0.95M0.05)9 (M ¼ Co, Mn, Fe, Al, Cu, Sn) Hydrogen Storage Electrode Alloys
,”
J. Alloys Compd.
,
376
(
1–2
), pp.
186
195
.
5.
Chan
,
C. K.
,
Peng
,
H. L.
,
Liu
,
G.
,
McIlwrath
,
K.
,
Zhang
,
X. F.
,
Huggins
,
R. A.
, and
Cui
,
Y.
,
2008
, “
High-Performance Lithium Battery Anodes Using Silicon Nanowires
,”
Nat. Nanotechnol.
,
3
(
1
), pp.
31
35
.
6.
Varoon
,
K.
,
Zhang
,
X. Y.
,
Elyassi
,
B.
,
Brewer
,
D. D.
,
Gettel
,
M.
,
Kumar
,
S.
,
Lee
,
J. A.
,
Maheshwari
,
S.
,
Mittal
,
A.
,
Sung
,
C. Y.
,
Cococcioni
,
M.
,
Francis
,
L. F.
,
McCormick
,
A. V.
,
Mkhoyan
,
K. A.
, and
Tsapatsis
,
M.
,
2011
, “
Dispersible Exfoliated Zeolite Nanosheets and Their Application as a Selective Membrane
,”
Science
,
334
(
6052
), pp.
72
75
.
7.
Park
,
M. G.
,
Lee
,
D. H.
,
Jung
,
H.
,
Choi
,
J. H.
, and
Park
,
C. M.
,
2018
, “
A Sn Based Nanocomposite for Li-Ion Battery Anode With High Energy Density, Rate Capability, and Reversibility
,”
ACS Nano.
,
12
(
3
), pp.
2955
2967
.
8.
Xue
,
G.
,
Zhong
,
J.
,
Cheng
,
Y.
, and
Wang
,
B.
,
2016
, “
Facile Fabrication of Cross-Linked Carbon Nanofiber via Directly Carbonizing Electrospun Polyacrylonitrile Nanofiber as High Performance Scaffold for Supercapacitors
,”
Electrochim. Acta
,
215
, pp.
29
35
.
9.
Li
,
J.
,
Pu
,
J.
,
Liu
,
Z.
,
Wang
,
J.
,
Wu
,
W.
,
Zhang
,
H.
, and
Ma
,
H.
,
2017
, “
Porous Nickel Scaffolded Tin-Antimony Anodes With Enhanced Electrochemical Properties for Li/Na-Ion Batteries
,”
ACS Appl. Mater. Interfaces
,
9
(
30
), pp.
25250
25256
.
10.
Birrozzi
,
A.
,
Maroni
,
F.
,
Raccichini
,
R.
,
Tossici
,
R.
,
Marassi
,
R.
, and
Nobili
,
F.
,
2015
, “
Enhanced Stability of SnSb/Graphene Anode Through Alternative Binder and Electrolyte Additive for Lithium Ion Batteries Application
,”
J. Power Sources
,
294
, pp.
248
253
.
11.
Leibowitz
,
J.
,
Allcorn
,
E.
, and
Manthiram
,
A.
,
2015
, “
SnSb–TiC–C Nanocomposite Alloy Anodes for Lithium-Ion Batteries
,”
J. Power Sources
,
279
, pp.
549
554
.
12.
Lin
,
C.
,
Yang
,
L.
,
Ouyang
,
L.
,
Liu
,
J.
,
Wang
,
H.
, and
Zhu
,
M.
,
2017
, “
A New Method for Few-Layer Graphene Preparation via Plasma-Assisted Ball Milling
,”
J. Alloys Compd.
,
728
, pp.
578
584
.
13.
Ouyang
,
L.
,
Cao
,
Z.
,
Wang
,
H.
,
Hu
,
R.
, and
Zhu
,
M.
,
2017
, “
Application of Dielectric Barrier Discharge Plasma-Assisted Milling in Energy Storage Materials—A Review
,”
J. Alloys Compd.
,
691
, pp.
422
435
.
14.
Wu
,
Y.
,
Pan
,
Q.
,
Zheng
,
F.
,
Ou
,
X.
,
Yang
,
C.
,
Xiong
,
X.
,
Liu
,
M.
,
Hu
,
D.
, and
Huang
,
C.
,
2018
, “
Sb@C/Expanded Graphite as High-Performance Anode Material for Lithium Ion Batteries
,”
J. Alloys Compd.
,
744
, pp.
481
486
.
15.
LeHo
,
K. H.
,
Rivier
,
L.
,
Jousselme
,
B.
,
Jegou
,
P.
,
Filoramo
,
A.
, and
Campidelli
,
S.
,
2010
, “
Zn-Porphyrin/Zn-Phthalocyanine Dendron for SWNT Functionalisation
,”
Chem. Commun.
,
46
(
46
), p.
8731
.
16.
Kong
,
J. H.
,
Wong
,
S. Y.
,
Zhang
,
Y.
,
Tan
,
H. R.
,
Li
,
X.
, and
Lu
,
X. H.
,
2011
, “
One-Dimensional Carbon–SnO2 and SnO2 Nanostructures via Single-Spinneret Electrospinning: Tunable Morphology and the Underlying Mechanism
,”
J. Mater. Chem.
,
21
(
40
), p.
15928
.
17.
Xia
,
X.
,
Li
,
Z. Y.
,
Xue
,
L. G.
,
Qiu
,
Y. P.
,
Zhang
,
C. Y.
, and
Zhang
,
X. W.
,
2017
, “
The Electrochemical Performance of SnSb/C Nanofibers With Different Morphologies and Underlying Mechanism
,”
J. Mater. Res.
,
32
(
6
), pp.
1184
1193
.
18.
Liu
,
Z.
,
Guo
,
R. T.
,
Meng
,
J. S.
,
Liu
,
X.
,
Wang
,
X. P.
,
Li
,
Q.
, and
Mai
,
L. Q.
,
2017
, “
Facile Electrospinning Formation of Carbon-Confined Metal Oxide Cube-in-Tube Nanostructures for Stable Lithium Storage
,”
Chem. Commun.
,
53
(
59
), pp.
8284
8287
.
19.
Wang
,
H. Y.
,
Zhang
,
X.
,
Zhang
,
Y. J.
,
Cheng
,
N.
,
Yu
,
T. Y.
,
Yang
,
Y.
, and
Yang
,
G.
,
2016
, “
Study of Carbonization Behavior of Polyacrylonitrile/Tin Salt as Anode Material for Lithium-Ion Batteries
,”
J. Appl. Polym. Sci.
,
133
(
36
), p.
43914
.
20.
Yuan
,
K. K.
,
Feng
,
C.
,
Gan
,
X. Z.
,
Yu
,
Z. C.
,
Wang
,
X. Q.
,
Zhu
,
L. Y.
,
Zhang
,
G. H.
, and
Xu
,
D.
,
2016
, “
Fabrication of La2Zr2O7 Ceramic Fibers via Electrospinning Method Using Different La2O3 Precursors
,”
Ceram. Int.
,
42
(
15
), pp.
16633
16639
.
21.
Li
,
Z.
,
Zhang
,
J. W.
,
Yu
,
L. G.
, and
Zhang
,
J. W.
,
2017
, “
Electrospun Porous Nanofibers for Electrochemical Energy Storage
,”
J. Mater. Sci.
,
52
(
11
), pp.
6173
6195
.
22.
Guo
,
W.
,
Yamada
,
R.
, and
Saida
,
J.
,
2018
, “
Rejuvenation and Plasticization of Metallic Glass by Deep Cryogenic Cycling Treatment
,”
Intermetallics
,
93
, pp.
141
147
.
23.
Nandakumar
,
P.
, and
Karthikeyan
,
R.
,
2018
, “
Effect of Deep Cryogenic Treatment on AISI A8 Tool Steel & Development of Wear Mechanism Maps Using Fuzzy Clustering
,”
IOP Conf.
,
346
, p.
012006
.
24.
Kumar
,
S.
,
Ahmed
,
M. R.
,
Lokesha
,
M.
, and
Manjunath
,
L. H.
,
2020
, “
Investigating the Impact of Deep Cryogenic Treatment on Surface Roughness and Cutting Force in Turning C45 Steel
,”
Mater. Today: Proc.
,
24
, pp.
1190
1198
.
25.
Gu
,
K. X.
,
Wang
,
J. J.
, and
Zhou
,
Y.
,
2014
, “
Effect of Cryogenic Treatment on Wear Resistance of Ti-6Al-4V Alloy for Biomedical Applications
,”
J. Mech. Behav. Biomed. Mater.
,
30
, pp.
131
139
.
26.
Ni
,
H. J.
,
Zhuo
,
L.
,
Gu
,
H.
,
Lv
,
S. S.
,
Zhu
,
Y.
,
Shi
,
C. S.
, and
Wang
,
X. X.
,
2018
, “
Effect of Cryogenic Treatment on Micro-Structure and Properties of Different Polymer Materials
,”
MATEC Web Conf.
,
166
, p.
01002
.
27.
Jiang
,
X. Q.
,
Li
,
N.
,
He
,
H.
,
Zhang
,
X. J.
,
Li
,
C. C.
, and
Yang
,
H.
,
2007
, “
Effect of Cryogenic Treatment on Mechanical Properties and Microstructures of 3102 Al-Alloy
,”
Trans. Tech. Publ.
,
546–549
, pp.
845
848
. www.scientific.net/MSF.546-549.845
28.
Sun
,
Y.
,
Yu
,
Z. H.
,
Li
,
T. Y.
,
Chen
,
Y.
, and
Xia
,
X.
,
2019
, “
Cryo-Treatment in Enhancing the Electrochemical Properties of SnSb/C Nanofiber Anodes for Lithium Ion Batteries
,”
Electrochim. Acta
,
296
, pp.
637
643
.
29.
Li
,
T. Y.
,
Chen
,
Y.
,
Wang
,
L. F.
, and
Xia
,
X.
,
2020
, “
Performance Enhancement of Sn-Ti-C Nanofibers Anode for Lithium-Ion Batteries via Deep Cryogenic Treatment
,”
J. Solid State Electrochem.
,
24
(
3
), pp.
781
793
.
30.
Xia
,
X.
,
Li
,
Z. Y.
,
Zhou
,
H. M.
,
Qiu
,
Y. P.
, and
Zhang
,
C. Y.
,
2016
, “
The Effect of Deep Cryogenic Treatment on SnSb/C Nanofibers Anodes for Li-Ion Battery
,”
Electrochim. Acta.
, pp.
765
772
.
31.
Sing
,
K. S. W.
,
Everett
,
D. H.
,
Haul
,
R. A. W.
,
Moscou
,
L.
,
Pierotti
,
R. A.
,
Rouquerol
,
J.
, and
Siemieniewska
,
T.
,
1985
, “
Physical and Biophysical Chemistry Division Commission on Colloid and Surface Chemistry Including Catalysis
,”
Pure Appl. Chem.
,
57
(
4
), pp.
603
619
.
32.
Zhai
,
C.
,
Qin
,
L.
,
Liu
,
S. M.
,
Xu
,
J. Z.
,
Tang
,
Z. Q.
, and
Wu
,
S. L.
,
2016
, “
Pore Structure in Coal: Pore Evolution After Cryogenic Freezing With Cyclic Liquid Nitrogen Injection and Its Implication on Coalbed Methane Extraction
,”
Energy Fuels
, pp.
6009
6020
.
33.
Gong
,
J.
,
Chen
,
X. C.
,
Wen
,
X.
,
Liu
,
J.
, and
Tang
,
T.
,
2018
, “
The Carbonization of Polymers: Basic Problems and Applications
,”
Sci. Sin.
,
48
(
8
), pp.
829
843
.
34.
Ishizaki
,
T.
,
Wada
,
Y.
,
Chiba
,
S.
,
Kumagai
,
S.
,
Lee
,
H.
,
Serizawa
,
A.
,
Li
,
O. L.
, and
Panomsuwan
,
G.
2016
, “
Effects of Halogen Doping on Nanocarbon Catalysts Synthesized by a Solution Plasma Process for the Oxygen Reduction Reaction
,”
Phys. Chem. Chem. Phys.
,
18
(
31
), pp.
21843
21851
.
35.
Xiao
,
C. Y.
,
2009
,
The Study of Deep Cryogenic Treatment of Cemented Carbide YT15 and Ultrahigh Molecular Weight Polyethylene
,
Southwest Jiaotong University
,
Chengdu, China
.
36.
Yan
,
Y.
,
Chen
,
K. B.
,
Li
,
H. R.
,
Hong
,
W.
,
Hu
,
X. B.
, and
Zhou
,
X. U.
,
2014
, “
Capping Effect of Reducing Agents and Surfactants in Synthesizing Silver Nanoplates
,”
Trans. Nonferrous Met. Soc. China
,
24
(
11
), pp.
3732
3738
.
37.
Lakshmi
,
D.
,
Nalini
,
B.
,
Sivaraj
,
P.
, and
Jeyapandi
,
S.
,
2017
, “
Electro Analytical Studies on Indium Incorporated SnSb Alloy Anode for Li-Ion Batteries
,”
J. Electroanal. Chem.
,
801
, pp.
459
465
.
38.
Wang
,
Z. X.
,
Song
,
D. Y.
,
Si
,
J.
,
Jiang
,
Y.
,
Yang
,
Y. Q.
,
Jiang
,
Y.
,
Huang
,
S. S.
,
Chen
,
Z. W.
, and
Zhao
,
B.
,
2018
, “
One-Step Hydrothermal Reduction Synthesis of Tiny Sn/SnO2 Nanoparticles Sandwiching Between Spherical Graphene With Excellent Lithium Storage Cycling Performances
,”
Electrochim. Acta
,
292
, pp.
72
80
.
39.
Zhou
,
H. M.
,
Li
,
Z. Y.
,
Qiu
,
Y. P.
, and
Xia
,
X.
,
2016
, “
The Effects of Carbon Distribution and Thickness on the Lithium Storage Properties of Carbon-Coated SnO2 Hollow Nanofibers
,”
J. Alloys Compd.
,
670
, pp.
35
40
.
40.
Yang
,
T.
, and
Lu
,
B.
,
2014
, “
Highly Porous Structure Strategy to Improve the SnO2 Electrode Performance for Lithium-Ion Batteries
,”
Phys. Chem. Chem. Phys.
,
16
(
9
), pp.
4115
4121
.
41.
Xia
,
J.
,
Liu
,
L.
,
Jamil
,
S.
,
Xie
,
J.
,
Yan
,
H.
,
Yuan
,
Y.
,
Zhang
,
Y.
,
Nie
,
S.
,
Pan
,
J.
,
Wang
,
X.
, and
Cao
,
G.
,
2019
, “
Free-Standing SnS/C Nanofiber Anodes for Ultralong Cycle-Life Lithium-Ion Batteries and Sodium-Ion Batteries
,”
Energy Storage Mater.
,
17
, pp.
1
11
.
You do not currently have access to this content.