Abstract

Liquid-based battery thermal management system (BTMS) is commonly applied to commercial electric vehicles (EVs). Current research on the liquid cooling structure of prismatic batteries is generally focused on microchannel cooling plates, while studies on the discrete tubes are limited. In this paper, a parallel liquid cooling structure based on heat-conducting plates and cooling tubes is proposed, with computational fluid dynamics used to investigate the cooling performance of the structure. Two different optimization schemes are then put forward, and the effects of the coolant inlet velocity and temperature on the thermal management performance of the optimized structures are explored. Compared with the previous series structures for the same battery module, the parallel structure can significantly reduce the pressure drop and the flow resistance loss. The gradient structures increasing the parallel round tube inner diameters were able to reduce the pressure drop, while the heat transfer was slightly enhanced. Changing the contact mode between the heat-conducting plates and the square cooling tubes could effectively improve the temperature uniformity of the battery module, particularly for structures with no contact between the lower region of the first plate and the cooling square tube. Based on the gradual increase in the inner diameter of the round tubes, the structure of breaking the contact between the lower region of the first plate and the cooling square tube was able to reduce the maximum temperature difference in the battery module within 3 Β°C by 41.12% and the pressure drop by 26.28% compared with the original structure.

References

1.
Lu
,
M.
,
Zhang
,
X.
,
Ji
,
J.
,
Xu
,
X.
, and
Zhang
,
Y.
,
2020
, β€œ
Research Progress on Power Battery Cooling Technology for Electric Vehicles
,”
J. Energy Storage
,
27
, p.
101155
.
2.
Lin
,
J.
,
Liu
,
X.
,
Li
,
S.
,
Zhang
,
C.
, and
Yang
,
S.
,
2021
, β€œ
A Review on Recent Progress, Challenges and Perspective of Battery Thermal Management System
,”
Int. J. Heat Mass Transfer
,
167
, pp.
120834
.
3.
Liu
,
H.
,
Wei
,
Z.
,
He
,
W.
, and
Zhao
,
J.
,
2017
, β€œ
Thermal Issues About Li-Ion Batteries and Recent Progress in Battery Thermal Management Systems: A Review
,”
Energ. Convers. Manage.
,
150
, pp.
304
–
330
.
4.
Mohammadian
,
S. K.
,
He
,
Y.
, and
Zhang
,
Y.
,
2015
, β€œ
Internal Cooling of a Lithium-Ion Battery Using Electrolyte as Coolant Through Microchannels Embedded Inside the Electrodes
,”
J. Power Sources
,
293
, pp.
458
–
466
.
5.
Huang
,
Y.
,
Tang
,
Y.
,
Yuan
,
W.
,
Fang
,
G.
,
Yang
,
Y.
,
Zhang
,
X.
,
Wu
,
Y.
,
Yuan
,
Y.
,
Wang
,
C.
, and
Li
,
J.
,
2021
, β€œ
Challenges and Recent Progress in Thermal Management With Heat Pipes for Lithium-Ion Power Batteries in Electric Vehicles
,”
Sci. China: Technol. Sci.
,
64
(
5
), pp.
919
–
956
.
6.
Mohammadian
,
S. K.
, and
Zhang
,
Y.
,
2016
, β€œ
Effects of Size of Microchannels on Thermo-Electrical Performance of an Internally Cooled Li-Ion Battery Cell
,”
ASME J. Electrochem. Energy Convers. Storage
,
13
(
4
), p.
044501
.
7.
Zichen
,
W.
, and
Changqing
,
D.
,
2021
, β€œ
A Comprehensive Review on Thermal Management Systems for Power Lithium-Ion Batteries
,”
Renewable Sustainable Energy Rev.
,
139
, pp.
110685
.
8.
Wu
,
W.
,
Wang
,
S.
,
Wu
,
W.
,
Chen
,
K.
,
Hong
,
S.
, and
Lai
,
Y.
,
2019
, β€œ
A Critical Review of Battery Thermal Performance and Liquid Based Battery Thermal Management
,”
Energ. Convers. Manage.
,
182
, pp.
262
–
281
.
9.
Tete
,
P. R.
,
Gupta
,
M. M.
, and
Joshi
,
S. S.
,
2021
, β€œ
Developments in Battery Thermal Management Systems for Electric Vehicles: A Technical Review
,”
J. Energy Storage
,
35
, p.
102255
.
10.
Xia
,
G.
,
Cao
,
L.
, and
Bi
,
G.
,
2017
, β€œ
A Review on Battery Thermal Management in Electric Vehicle Application
,”
J. Power Sources
,
367
, pp.
90
–
105
.
11.
Xun
,
J.
,
Liu
,
R.
, and
Jiao
,
K.
,
2013
, β€œ
Numerical and Analytical Modeling of Lithium Ion Battery Thermal Behaviors With Different Cooling Designs
,”
J. Power Sources
,
233
, pp.
47
–
61
.
12.
Huo
,
Y.
,
Rao
,
Z.
,
Liu
,
X.
, and
Zhao
,
J.
,
2015
, β€œ
Investigation of Power Battery Thermal Management by Using Mini-Channel Cold Plate
,”
Energ. Convers. Manage.
,
89
, pp.
387
–
395
.
13.
Pan
,
C.
,
Tang
,
Q.
,
He
,
Z.
,
Wang
,
L.
, and
Chen
,
L.
,
2019
, β€œ
Structure Optimization of Battery Module With a Parallel Multi-Channel Liquid Cooling Plate Based on Orthogonal Test
,”
ASME J. Electrochem. Energy Convers. Storage
,
17
(
2
), p.
021104
.
14.
Qian
,
Z.
,
Li
,
Y.
, and
Rao
,
Z.
,
2016
, β€œ
Thermal Performance of Lithium-Ion Battery Thermal Management System by Using Mini-Channel Cooling
,”
Energ. Convers. Manage.
,
126
, pp.
622
–
631
.
15.
Huang
,
Y.
,
Mei
,
P.
,
Lu
,
Y.
,
Huang
,
R.
,
Yu
,
X.
,
Chen
,
Z.
, and
Roskilly
,
A. P.
,
2019
, β€œ
A Novel Approach for Lithium-Ion Battery Thermal Management With Streamline Shape Mini Channel Cooling Plates
,”
Appl. Therm. Eng.
,
157
, p.
113623
.
16.
Xu
,
X.
,
Li
,
W.
,
Xu
,
B.
, and
Qin
,
J.
,
2019
, β€œ
Numerical Study on a Water Cooling System for Prismatic LiFePO4 Batteries at Abused Operating Conditions
,”
Appl. Energy
,
250
, pp.
404
–
412
.
17.
Shang
,
Z.
,
Qi
,
H.
,
Liu
,
X.
,
Ouyang
,
C.
, and
Wang
,
Y.
,
2019
, β€œ
Structural Optimization of Lithium-Ion Battery for Improving Thermal Performance Based on a Liquid Cooling System
,”
Int. J. Heat Mass Transfer
,
130
, pp.
33
–
41
.
18.
Srinivaas
,
S.
,
Li
,
W.
,
Garg
,
A.
,
Peng
,
X.
, and
Gao
,
L.
,
2019
, β€œ
Battery Thermal Management System Design: Role of Influence of Nanofluids, Flow Directions, and Channels
,”
ASME J. Electrochem. Energy Convers. Storage
,
17
(
2
), p.
021110
.
19.
Panchal
,
S.
,
Khasow
,
R.
,
Dincer
,
I.
,
Agelin-Chaab
,
M.
,
Fraser
,
R.
, and
Fowler
,
M.
,
2017
, β€œ
Thermal Design and Simulation of Mini-Channel Cold Plate for Water Cooled Large Sized Prismatic Lithium-Ion Battery
,”
Appl. Therm. Eng.
,
122
, pp.
80
–
90
.
20.
Jarrett
,
A.
, and
Kim
,
I. Y.
,
2014
, β€œ
Influence of Operating Conditions on the Optimum Design of Electric Vehicle Battery Cooling Plates
,”
J. Power Sources
,
245
, pp.
644
–
655
.
21.
Jarrett
,
A.
, and
Kim
,
I. Y.
,
2011
, β€œ
Design Optimization of Electric Vehicle Battery Cooling Plates for Thermal Performance
,”
J. Power Sources
,
196
(
23
), pp.
10359
–
10368
.
22.
Nieto
,
N.
,
DΓ­az
,
L.
,
Gastelurrutia
,
J.
,
Blanco
,
F.
,
Ramos
,
J. C.
, and
Rivas
,
A.
,
2014
, β€œ
Novel Thermal Management System Design Methodology for Power Lithium-Ion Battery
,”
J. Power Sources
,
272
, pp.
291
–
302
.
23.
Sheng
,
L.
,
Su
,
L.
,
Zhang
,
H.
,
Li
,
K.
,
Fang
,
Y.
,
Ye
,
W.
, and
Fang
,
Y.
,
2019
, β€œ
Numerical Investigation on a Lithium Ion Battery Thermal Management Utilizing a Serpentine-Channel Liquid Cooling Plate Exchanger
,”
Int. J. Heat Mass Transfer
,
141
, pp.
658
–
668
.
24.
Li
,
Y.
,
Zhou
,
Z.
, and
Wu
,
W.
,
2019
, β€œ
Three-Dimensional Thermal Modeling of Li-Ion Battery Cell and 50β€―V Li-Ion Battery Pack Cooled by Mini-Channel Cold Plate
,”
Appl. Therm. Eng.
,
147
, pp.
829
–
840
.
25.
Liao
,
X.
,
Ma
,
C.
,
Peng
,
X.
,
Li
,
Y.
,
Duan
,
L.
,
Garg
,
A.
, and
Gao
,
L.
,
2020
, β€œ
A Framework of Optimal Design of Thermal Management System for Lithium-Ion Battery Pack Using Multi-Objectives Optimization
,”
ASME J. Electrochem. Energy Convers. Storage
,
18
(
2
), p.
021005
.
26.
Liu
,
J.
,
Li
,
H.
,
Li
,
W.
,
Shi
,
J.
,
Wang
,
H.
, and
Chen
,
J.
,
2020
, β€œ
Thermal Characteristics of Power Battery Pack With Liquid-Based Thermal Management
,”
Appl. Therm. Eng.
,
164
, p.
114421
.
27.
Rao
,
Z.
, and
Zhang
,
X.
,
2019
, β€œ
Investigation on Thermal Management Performance of Wedge-Shaped Microchannels for Rectangular Li-Ion Batteries
,”
Int. J. Energy Res.
,
43
(
8
), pp.
3876
–
3890
.
28.
Lan
,
C.
,
Xu
,
J.
,
Qiao
,
Y.
, and
Ma
,
Y.
,
2016
, β€œ
Thermal Management for High Power Lithium-Ion Battery by Minichannel Aluminum Tubes
,”
Appl. Therm. Eng.
,
101
, pp.
284
–
292
.
29.
Xu
,
J.
,
Lan
,
C.
,
Qiao
,
Y.
, and
Ma
,
Y.
,
2017
, β€œ
Prevent Thermal Runaway of Lithium-Ion Batteries With Minichannel Cooling
,”
Appl. Therm. Eng.
,
110
, pp.
883
–
890
.
30.
An
,
Z.
,
Shah
,
K.
,
Jia
,
L.
, and
Ma
,
Y.
,
2019
, β€œ
A Parametric Study for Optimization of Minichannel Based Battery Thermal Management System
,”
Appl. Therm. Eng.
,
154
, pp.
593
–
601
.
31.
An
,
Z.
,
Jia
,
L.
,
Li
,
X.
, and
Ding
,
Y.
,
2017
, β€œ
Experimental Investigation on Lithium-Ion Battery Thermal Management Based on Flow Boiling in Mini-Channel
,”
Appl. Therm. Eng.
,
117
, pp.
534
–
543
.
32.
Tang
,
Z.
,
Li
,
J.
,
Liu
,
Z.
, and
Cheng
,
J.
,
2020
, β€œ
Thermal Performance of a Thermal Management System With a Thin Plate and a Slender Tube for Prismatic Batteries
,”
Int. J. Energ. Res.
,
45
(
4
), pp.
5347
–
5358
.
33.
Bernardi
,
D.
,
Pawlikowski
,
E.
, and
Newman
,
J.
,
1985
, β€œ
A General Energy Balance for Battery Systems
,”
J. Electrochem. Soc.
,
132
(
1
), pp.
5
–
12
.
34.
Guo
,
M.
,
Kim
,
G.
, and
White
,
R. E.
,
2013
, β€œ
A Three-Dimensional Multi-Physics Model for a Li-Ion Battery
,”
J. Power Sources
,
240
, pp.
80
–
94
.
35.
Jiaqiang
,
E.
,
Han
,
D.
,
Qiu
,
A.
,
Zhu
,
H.
,
Deng
,
Y.
,
Chen
,
J.
,
Zhao
,
X.
,
Zuo
,
W.
,
Wang
,
H.
,
Chen
,
J.
, and
Peng
,
Q.
,
2018
, β€œ
Orthogonal Experimental Design of Liquid-Cooling Structure on the Cooling Effect of a Liquid-Cooled Battery Thermal Management System
,”
Appl. Therm. Eng.
,
132
, pp.
508
–
520
.
36.
Chen
,
D.
,
Jiang
,
J.
,
Kim
,
G.
,
Yang
,
C.
, and
Pesaran
,
A.
,
2016
, β€œ
Comparison of Different Cooling Methods for Lithium Ion Battery Cells
,”
Appl. Therm. Eng.
,
94
, pp.
846
–
854
.
37.
Panchal
,
S.
,
Dincer
,
I.
,
Agelin-Chaab
,
M.
,
Fraser
,
R.
, and
Fowler
,
M.
,
2016
, β€œ
Experimental and Theoretical Investigations of Heat Generation Rates for a Water Cooled LiFePO4 Battery
,”
Int. J. Heat Mass Transfer
,
101
, pp.
1093
–
1102
.
38.
Monika
,
K.
,
Chakraborty
,
C.
,
Roy
,
S.
,
Dinda
,
S.
,
Singh
,
S. A.
, and
Datta
,
S. P.
,
2021
, β€œ
An Improved Mini-Channel Based Liquid Cooling Strategy of Prismatic LiFePO4 Batteries for Electric or Hybrid Vehicles
,”
J. Energy Storage
,
35
, pp.
102301
.
You do not currently have access to this content.