Abstract

The volume expansion of anode active materials in all-solid-state lithium-ion batteries strongly affects the dynamic change in the electrode structure and its activity in electrochemical reactions and mass transport. Thus, understanding the mechanisms and internal phenomena during the charging process with volume expansion is important. In addition, clarifying these phenomena contributes to the selection of the active material when creating the electrode structure. This study aimed to verify the effect of volume expansion of the active material in a porous electrode layer on the charging performance using a numerical simulation. In this calculation, for the electrochemical reaction transport analysis, equations were applied based on the porous electrode theory; for the structural deformation due to expansion, we expressed the change by controlling the structural parameters and built a model for simulation. From the simulation results, when the fastening pressure was small, the active material with a large volume expansion ratio exhibited a larger capacity. However, for a large fastening pressure, active materials with a large volume expansion ratio seemed not to be used. Although the volume expansion of the active material should be suppressed from the viewpoint of ion conduction network rupture, these results demonstrate that the influence of volume expansion effectively depends on the electrode creation conditions. This model will help to optimize the design of all-solid-state batteries and can be the key to further performance improvement.

References

1.
Inoue
,
G.
,
2016
, “Secondary Batteries and Fuel Cell Systems for Next-Generation Vehicles,”
Energy Technology Roadmaps of Japan
,
Y
.
Kato
,
M
.
Koyama
,
Y
.
Fukushima
, and
T
.
Nakagaki
, eds.,
Springer Japan
,
Tokyo
, pp.
537
547
.
2.
Kerman
,
K.
,
Luntz
,
A.
,
Viswanathan
,
V.
,
Chiang
,
Y. M.
, and
Chen
,
Z.
,
2017
, “
Review—Practical Challenges Hindering the Development of Solid State Li Ion Batteries
,”
J. Electrochem. Soc.
,
164
(
7
), pp.
A1731
A1744
.
3.
Banerjee
,
A.
,
Wang
,
X.
,
Fang
,
C.
,
Wu
,
E. A.
, and
Meng
,
Y. S.
,
2020
, “
Interfaces and Interphases in All-Solid-State Batteries With Inorganic Solid Electrolytes
,”
Chem. Rev.
,
120
(
14
), pp.
6878
6933
.
4.
Kamaya
,
N.
,
Homma
,
K.
,
Yamakawa
,
Y.
,
Hirayama
,
M.
,
Kanno
,
R.
,
Yonemura
,
M.
,
Kamiyama
,
T.
, et al
,
2011
, “
A Lithium Superionic Conductor
,”
Nat. Mater.
,
10
(
9
), pp.
682
686
.
5.
Calpa
,
M.
,
Rosero-Navarro
,
N. C.
,
Miura
,
A.
, and
Tadanaga
,
K.
,
2019
, “
Electrochemical Performance of Bulk-Type All-Solid-State Batteries Using Small-Sized Li7P3S11 Solid Electrolyte Prepared by Liquid Phase as the Ionic Conductor in the Composite Cathode
,”
Electrochim. Acta
,
296
(
10
), pp.
473
480
.
6.
Pan
,
M.
,
Hakari
,
T.
,
Sakuda
,
A.
,
Hayashi
,
A.
,
Suginaka
,
Y.
,
Nori
,
S.
, and
Tatsumisago
,
M.
,
2018
, “
Electrochemical Properties of All-Solid-State Lithium Batteries With Amorphous FeSx-Based Composite Positive Electrodes Prepared via Mechanochemistry
,”
Electrochemistry
,
86
(
4
), pp.
175
178
.
7.
Huggins
,
R. A.
,
1999
, “
Lithium Alloy Negative Electrodes
,”
J. Power Sources
,
81–82
, pp.
13
19
.
8.
Ma
,
D.
,
Cao
,
Z.
, and
Hu
,
A.
,
2014
, “
Si-Based Anode Materials for Li-Ion Batteries: A Mini Review
,”
Nano-Micro Lett.
,
6
(
4
), pp.
347
358
.
9.
Kim
,
H.
,
Lee
,
E. J.
, and
Sun
,
Y. K.
,
2014
, “
Recent Advances in the Si-Based Nanocomposite Materials as High Capacity Anode Materials for Lithium Ion Batteries
,”
Mater. Today
,
17
(
6
), pp.
285
297
.
10.
Miyazaki
,
R.
,
2020
, “
High-Capacity Anode Materials for All-Solid-State Lithium Batteries
,”
Front. Energy Res.
,
8
, p.
171
.
11.
Hasegawa
,
T.
,
Mukai
,
S. R.
,
Shirato
,
Y.
, and
Tamon
,
H.
,
2004
, “
Preparation of Carbon Gel Microspheres Containing Silicon Powder for Lithium Ion Battery Anodes
,”
Carbon
,
42
(
12–13
), pp.
2573
2579
.
12.
So
,
M.
,
Inoue
,
G.
,
Hirate
,
R.
,
Nunoshita
,
K.
,
Ishikawa
,
S.
, and
Tsuge
,
Y.
,
2021
, “
Simulation of Fabrication and Degradation of All-Solid-State Batteries With Ductile Particles
,”
J. Electrochem. Soc.
,
168
(
3
), p.
030538
.
13.
So
,
M.
,
Inoue
,
G.
,
Hirate
,
R.
,
Nunoshita
,
K.
,
Ishikawa
,
S.
, and
Tsuge
,
Y.
,
2021
, “
Effect of Mold Pressure on Compaction and Ion Conductivity of All-Solid-State Batteries Revealed by the Discrete Element Method
,”
J. Power Sources
,
508
, p.
230344
.
14.
Li
,
W. J.
,
Hirayama
,
M.
,
Suzuki
,
K.
, and
Kanno
,
R.
,
2016
, “
Fabrication and All Solid-State Battery Performance of TiS2/Li10GeP2S12 Composite Electrodes
,”
Mater. Trans.
,
57
(
4
), pp.
549
552
.
15.
Tian
,
H. K.
, and
Qi
,
Y.
,
2017
, “
Simulation of the Effect of Contact Area Loss in All-Solid-State Li-Ion Batteries
,”
J. Electrochem. Soc.
,
164
(
11
), pp.
E3512
E3521
.
16.
Doyle
,
M.
,
Fuller
,
T. F.
, and
Newman
,
J.
,
1993
, “
Modeling of Galvanostatic Charge and Discharge of the Lithium/Polymer/Insertion Cell
,”
J. Electrochem. Soc.
,
140
(
6
), pp.
1526
1533
.
17.
Goldin
,
G. M.
,
Colclasure
,
A. M.
,
Wiedemann
,
A. H.
, and
Kee
,
R. J.
,
2012
, “
Three-Dimensional Particle-Resolved Models of Li-Ion Batteries to Assist the Evaluation of Empirical Parameters in One-Dimensional Models
,”
Electrochim. Acta
,
64
, pp.
118
129
.
18.
Colclasure
,
A. M.
, and
Kee
,
R. J.
,
2010
, “
Thermodynamically Consistent Modeling of Elementary Electrochemistry in Lithium-Ion Batteries
,”
Electrochim. Acta
,
55
(
28
), pp.
8960
8973
.
19.
Golmon
,
S.
,
Maute
,
K.
, and
Dunn
,
M. L.
,
2009
, “
Numerical Modeling of Electrochemical–Mechanical Interactions in Lithium Polymer Batteries
,”
Compt. Struct.
,
87
(
23–24
), pp.
1567
1579
.
20.
Wang
,
M.
,
Xiao
,
X.
, and
Huang
,
X.
,
2016
, “
Study of Lithium Diffusivity in Amorphous via Finite Element Analysis
,”
J. Power Sources
,
307
, pp.
77
85
.
21.
Siegel
,
J. B.
,
Stefanopoulou
,
A. G.
,
Hagans
,
P.
,
Ding
,
Y.
, and
Gorsich
,
D.
,
2013
, “
Expansion of Lithium Ion Pouch Cell Batteries: Observations From Neutron Imaging
,”
J. Electrochem. Soc.
,
160
(
8
), pp.
A1031
A1038
.
22.
Hashin
,
Z.
, and
Shtrikman
,
S.
,
1963
, “
A Variational Approach to the Theory of the Elastic Behaviour of Multiphase Materials
,”
J. Mech. Phys. Solids
,
11
(
2
), pp.
127
140
.
23.
Hao
,
F.
, and
Mukherjee
,
P. P.
,
2018
, “
Mesoscale Analysis of the Electrolyte-Electrode Interface in All-Solid-State Li-Ion Batteries
,”
J. Electrochem. Soc.
,
165
(
9
), pp.
A1857
A1864
.
24.
Qi
,
Y.
,
Hector
,
L. G.
,
James
,
C.
, and
Kim
,
K. J.
,
2014
, “
Lithium Concentration Dependent Elastic Properties of Battery Electrode Materials From First Principles Calculations
,”
J. Electrochem. Soc.
,
161
(
11
), pp.
F3010
F3018
.
25.
Oh
,
K. Y.
,
Epureanu
,
B. I.
,
Siegel
,
J. B.
, and
Stefanopoulou
,
A. G.
,
2016
, “
Phenomenological Force and Swelling Models for Rechargeable Lithium-Ion Battery Cells
,”
J. Power Sources
,
310
, pp.
118
129
.
26.
Okamoto
,
Y.
,
Achiha
,
T.
,
Kanayama
,
N.
,
Fukukawa
,
M.
,
Konishi
,
R.
,
Ozono
,
H.
, and
Tubota
,
T.
, “
In-Situ Analysis of Solid-State Li-Ion Battery by Using SEM Specimen Holder Integrated With Load Cell (3)
,”
Proceedings of the 57th Battery Symposium in Japan
,
Fukuoka
,
Nov. 14–16, 2017
,
3C14
, p.
200
.
27.
Liu
,
X.
,
Park
,
K.
,
So
,
M.
,
Ishikawa
,
S.
,
Terao
,
T.
,
Shinohara
,
K.
,
Komori
,
C.
,
Kimura
,
N.
,
Inoue
,
G.
, and
Tsuge
,
Y.
,
2022
, “
3D Generation and Reconstruction of the Fuel Cell Catalyst Layer using 2D Images based on Deep Learning
,”
J. Power Sources Adv.
,
14
, p.
100084
.
28.
Inoue
,
G.
, and
Kawase
,
M.
,
2017
, “
Numerical and Experimental Evaluation of Relationship Between Porous Electrode Structure and Ion and Electron Conductivity in Lithium-Ion Battery
,”
J. Power Sources
,
342
, pp.
476
488
.
29.
Inoue
,
G.
,
Yoshimoto
,
T.
,
Matsukuma
,
Y.
, and
Minemoto
,
M.
,
2008
, “
Development of Simulated Gas Diffusion Layer of Polymer Electrolyte Fuel Cells and Evaluation of Its Structure
,”
J. Power Sources
,
175
(
1
), pp.
145
158
.
30.
Gavalas
,
G. R.
,
1980
, “
A Random Capillary Model With Application to Char Gasification at Chemically Controlled Rates
,”
AIChE J.
,
26
(
4
), pp.
577
585
.
31.
Hurt
,
R. H.
,
Sarofim
,
A. F.
, and
Longwell
,
J. P.
,
1991
, “
Effect of Nonuniform Surface Reactivity on the Evolution of Pore Structure and Surface Area During Carbon Gasification
,”
Energy Fuels
,
5
(
3
), pp.
463
468
.
32.
Obrovac
,
M. N.
,
Christensen
,
L.
,
Le
,
D. B.
, and
Dahn
,
J. R.
,
2007
, “
Alloy Design for Lithium-Ion Battery Anodes
,”
J. Electrochem. Soc.
,
154
(
9
), pp.
A849
A855
.
33.
Koerver
,
R.
,
Zhang
,
W.
,
de Biasi
,
L.
,
Schweidler
,
S.
,
Kondrakov
,
A. O.
,
Kolling
,
S.
,
Brezesinski
,
T.
,
Hartmann
,
P.
,
Zeier
,
W. G.
, and
Janek
,
J.
,
2018
, “
Chemo-mechanical Expansion of Lithium Electrode Materials—On the Route to Mechanically Optimized All-Solid-State Batteries
,”
Energy Environ. Sci.
,
11
(
8
), pp.
2142
2158
.
34.
Inoue
,
G.
,
Mashioka
,
H.
,
Kimura
,
N.
, and
Tsuge
,
Y.
,
2021
, “
Identifying Parameters From Discharging and Relaxation Curves of Lithium-Ion Batteries Using Porous Electrode Theory
,”
J. Chem. Eng. Japan
,
54
(
5
), pp.
207
212
.
You do not currently have access to this content.