Abstract

Battery technology has been a hot spot for many researchers lately. Electrochemical researchers have been focusing on the synthesis and design of battery materials; researchers in the field of electronics have been studying the simulation and design of battery management system (BMS), whereas mechanical engineers have been dealing with structural safety and thermal management strategies for batteries. However, overcoming battery limitation in only one or two domains will not design an efficient battery pack as it requires an integrated framework. So far, there are few research studies that circumscribed all the multidisciplinary aspects (cell material selection, cell-electrode design, cell clustering, state of health (SOH) estimation, thermal management, cell monitoring, and recycling) simultaneously for battery packs in electric vehicles (EVs). This article presents a holistic engineering design and simulation strategy for a future advanced battery pack and its parts by assimilating paradigmatic solutions for cell material selection, component design, cell clustering, thermal management, battery monitoring, and recycling aspects of the battery and its components. The developed framework has been proposed based on density functional theory (DFT)-based cell material selection, topology design-based cell-electrode design, machine learning (ML)-based SOH estimation along with multidisciplinary design optimization-based liquid cooling system. The proposed framework also highlights the optimal configuration of cells using ML algorithms and multi-objective optimization of cell-assembly parameters. The role of digital twins for real-time and faster acquisition of data has been highlighted for the advanced and futuristic battery pack designs. Furthermore, a preliminary investigation of robot-assisted disassembly and recycling of battery packs has been summarized. Each proposed methodology has been discussed in detail along with advantages and limitations. Critical research orientations are also discussed in the end.

References

1.
Bijoy
,
S.
,
Kalita
,
P.
,
Garg
,
A.
,
Niu
,
X.
,
Zhang
,
X.
,
Peng
,
X.
, and
Bhattacharjee
,
D.
,
2019
, “
A Review of State of Health Estimation of Energy Storage Systems: Challenges and Possible Solutions for Futuristic Applications of li-Ion Battery Packs in EV
,”
ASME J. Electrochem. Energy Convers. Storage
,
16
(
4
), p.
040801
.
2.
Shimamura
,
O.
,
Watanabe
,
K.
,
Ohsawa
,
Y.
, and
Horie
,
H.
,
2007
, “
Research and Development Work on Lithium-Ion Batteries for Environmental Vehicles
,”
World Electr. Vehicle Association J.
,
1
(
1
), pp.
251
257
.
3.
Melhem
,
F. Y.
,
Grundur
,
O.
,
Hammoudan
,
Z.
, and
Moubayed
,
N.
,
2017
, “
Optimization & Energy Management in Smart Home Considering Photo-Voltaic, Wind and Battery Storage System With Integration of Electric Vehicles
,”
Canad. J. Electr. Comput. Eng.
,
40
(
2
), pp.
128
138
.
4.
Uddin
,
K.
,
Moore
,
A. D.
,
Barai
,
A.
, and
Marco
,
J.
,
2016
, “
Effects of High Frequency Current Ripple on Electric Vehicle Battery Performance
,”
Appl. Energy
,
178
, pp.
142
154
.
5.
Tang
,
X.
,
Xiaofang
,
M.
,
Lin
,
J.
, and
Koch
,
B.
,
2011
, “
Capacity Estimation for Li-Ion Batteries
,”
American Control Conference
,
San Francisco, CA
,
June 29–July 1
, pp.
947
952
.
6.
Wang
,
Q.
,
Cheng
,
X. J.
, and
Wang
,
J.
,
2017
, “
A New Algorithm for a Fast Testing and Sorting System Applied to Battery Clustering
,”
Renewable Energy Resources Impact: 2017 6th International Conference on Clean Electrical Power (ICCEP)
,
Santa Margherita Ligure
,
June 27–29
, pp.
397
402
.
7.
Peng
,
X.
,
Garg
,
A.
,
Zhang
,
J.
, and
Shui
,
L.
,
2017
, “
Thermal Management System Design for Battery Packs of Electric Vehicles: A Survey
,”
2017 Asian Conference on Energy, Power and Transportation (ACEPT)
,
Singapore
,
Oct. 24–26
, pp.
1
5
.
8.
Reitler
,
C.
,
Wasssiliadis
,
N.
, and
Lien Kamp
,
M.
,
2019
, “
Design of Thermal Management Systems for Battery Electric Vehicles
,”
2019 Fourteenth International Conference on Ecological Vehicles and Renewable Energies (EVER)
,
Monte-Carlo, Monaco
,
May 8–10
, pp.
1
10
.
9.
He
,
H.
,
Zhang
,
X.
,
Xiong
,
R.
,
Xu
,
Y.
, and
Guo
,
H.
,
2012
, “
Online Model Based Estimation of State of Charge and Open-Circuit Voltage of Li-Ion Batteries in Electric Vehicles
,”
Energy
,
30
(
1
), pp.
320
318
.
10.
Zhu
,
F.
,
Liu
,
G.
,
Tao
,
C.
,
Wang
,
K.
, and
Jiang
,
K.
,
2017
, “
Battery Management System for li-Ion Battery
,”
J. Eng.
,
2017
(
13
), pp.
1437
1440
.
11.
Li
,
W.
,
Garg
,
A.
,
Xiao
,
M.
,
Peng
,
X.
,
Le Phung
,
M. L.
,
Tran
,
V. M.
, and
Gao
,
L.
,
2020
, “
Intelligent Optimization Methodology of Battery Pack for Electric Vehicles: A Multidisciplinary Perspective
,”
Int. J. Energy Res.
,
44
(
12
), pp.
9686
9706
.
12.
Mishra
,
A.
,
Mehta
,
A.
,
Basu
,
S.
,
Maloda
,
S. J.
,
Shetti
,
N. P.
,
Shukla
,
S. S.
,
Nadagouda
,
M. N.
, and
Aminabhavi
,
T. M.
,
2018
, “
Electrode Materials for Lithium-Ion Batteries
,”
Mater. Sci. Energy Technol.
,
1
(
2
), pp.
182
187
.
13.
Penick
,
C.
,
Bhate
,
D.
,
Ferry
,
L.
, and
Lee
,
C.
,
2019
, “
Classification and Selection of Cellular Materials in Mechanical Design: Engineering and Biometric Approaches
,”
Designs
,
3
(
1
), p.
19
.
14.
Bhate
,
D.
,
2019
, “
Four Questions in Cellular Material Design
,”
Materials
,
12
(
7
), p.
1060
.
15.
Heard
,
D.
, and
Lennox
,
A.
,
2020
, “
Electrode Materials in Modern Organic Electrochemistry
,”
Angew. Chem. Int. Ed.
,
59
(
43
), pp.
18866
18884
.
16.
Xu
,
Z.
,
Yang
,
J.
,
Zhang
,
T.
,
Nuli
,
Y.
,
Wang
,
J.
, and
Hirano
,
S.
,
2018
, “
Silicon Microparticle Anodes With Self-Healing Multiple Network Binder
,”
Joule
,
2
(
5
), pp.
950
961
.
17.
Mei
,
W.
,
Chen
,
H.
,
Sun
,
J.
, and
Wang
,
Q.
,
2019
, “
The Effect of Electrode Design Parameters on Battery Performance and Optimization of Electrode Thickness Based on Electrochemical-Thermal Coupling Model
,”
Sust. Energy Fuels
,
2019
(
3
), pp.
148
165
.
18.
Ye
,
J.
,
Baumgaertal
,
A. C.
,
Wang
,
Y. M.
,
Biener
,
J.
, and
Biener
,
M. M.
,
2014
, “
Structural Optimization of 3D Porous Electrodes for High-Rate Performance in Li-Ion Batterise
,”
CAS Nano
,
9
(
2
), pp.
2194
2202
.
19.
Mei
,
W.
,
Chen
,
H.
,
Sun
,
J.
, and
Wang
,
Q.
,
2018
, “
Numerical Study on Tab Dimension Optimization of Lithium-Ion Battery From the Thermal Safety Perspective
,”
Appl. Therm. Eng.
,
142
, pp.
148
165
.
20.
Reutar
,
F.
,
Baasner
,
A.
,
Pampel
,
J.
,
Piwko
,
M.
,
Dorfler
,
S.
,
Althues
,
H.
, and
Kaskel
,
S.
,
2019
, “
Importance of Capacity Balancing on the Electrochemical Performance of NCM811 Silicon Fuel Cells
,”
J. Electrochem. Soc.
,
166
(
14
), p.
A3265
.
21.
Lopez-Chavéz
,
R.
, and
Cuentas-Gallegos
,
A. K.
,
2013
, “
The Effect of Binder in Electrode Materials for Capacitance Improvement and ELDC Binder Free Cell Design
,”
J. New Mater. Electrochem. Syst.
,
16
(
3
), pp.
197
202
.
22.
Noura
,
N.
,
Boulon
,
L.
, and
Emei
,
S.
,
2020
, “
A Review of Battery State of Health Estimation Methods: Hybrid Electric Vehicle Challenges
,”
World Electr. Vehicle J.
,
11
(
4
), p.
wevy 11040066
.
23.
Bartlett
,
A.
,
Marciki
,
J.
,
Onori
,
S.
,
Rizzoni
,
G.
, and
Guang
,
X.
,
2016
, “
Electrochemical Model-Based State of Charge and Capacity Estimation for a Composite Electrode Li-Ion Battery
,”
IEEE Trans. Control Syst. Technol.
,
24
(
2
), p.
1
.
24.
Andre
,
D.
,
Appel
,
C.
,
Soczka-Guth
,
T.
, and
Sauer
,
D. U.
,
2013
, “
Advanced Mathematical Methods of SOC & SOH Estimation for Li-Ion Batteries
,”
J. Power Sources
,
224
, pp.
20
27
.
25.
Li
,
Y.
,
Liu
,
K.
,
Foley
,
A. M.
,
Zulke
,
A.
,
Berecibar
,
M.
,
Maury
,
E. N.
,
Van Mierlo
,
J.
, and
Hoster
,
H. E.
,
2019
, “
Data-Driven Health Estimation & Lifetime Prediction of Lithium-Ion Batteries: A Review
,”
Renew. Sust. Energy Rev.
,
113
, p.
109254
.
26.
Zhao
,
L.
,
Wang
,
Y.
, and
Cheng
,
J.
,
2019
, “
A Hybrid Method for Remaining Useful Life Estimation of Lithium-Ion Battery With Regeneration Phenomena
,”
Appl. Sci.
,
9
(
9
), p.
1890
.
27.
Riviere
,
E.
,
Sari
,
A.
,
Venet
,
P.
,
Meniere
,
F.
, and
Bultei
,
Y.
,
2019
, “
Innovative Incremental Capacity Analysis Implementation for LiPeO4 Cell State of Health Estimation in Electric Vehicles
,”
Batteries
,
5
(
37
), pp.
1
13
.
28.
Harting
,
N.
,
Wollf
,
N.
,
Roder
,
F.
, and
Krewar
,
U.
,
2019
, “
State of Health Diagnostic of Li-Ion Batteries Using Non-Linear Frequency Response Analysis
,”
J. Electrochem. Soc.
,
166
, p.
A277
.
29.
Zhou
,
D.
,
Yin
,
H.
,
Fu
,
P.
, and
Song
,
X.
,
2018
, “
Prognostics for SOH of Lithium-Ion Batteries Based on Gaussian Process Regression
,”
Math. Prob. Eng.
,
2018
, pp.
1
11
.
30.
Tessier
,
A. O.
,
Dubois
,
M. R.
, and
Trovao
,
J. P.
,
2016
, “
Real-Time Estimator Li-Ion Cells Internal Resistance for EV Applications
,”
World Electr. Vehicle J.
,
8
(
2
), pp.
410
421
.
31.
Saha
,
A.
,
Han
,
S.
,
Agarwal
,
S.
, and
Guha
,
A.
,
2020
, “
An Incremental Voltage Difference Based Technique for Online State of Health Estimation of Li-Ion Batteries
,”
Sci. Rep.
,
10
(
1
), p.
9526
.
32.
Yun
,
L.
,
Shui
,
L.
,
Gao
,
L.
,
Fun
,
Z.
,
Ruhatiya
,
C.
,
Wang
,
C. T.
, and
Garg
,
A.
,
2019
, “
Experimental Combined Grouping Analysis Approach for Robust Battery Pack Design for EV With Higher Performance
,”
IOP Conference Series: Earth and Environmental Science
,
1
, pp.
1
10
.
33.
Piao
,
C.
,
Wang
,
Z.
,
Cao
,
J.
,
Zhang
,
W.
, and
Lu
,
S.
,
2015
, “
Lithium-Ion Battery Cell-Balancing Algorithm for Battery Management System Based on Real-Time Outlier Detection
,”
Math. Prob. Eng.
,
2015
, pp.
1
12
.
34.
Sun
,
F.
,
Xiong
,
R.
,
He
,
H.
,
Li
,
W.
, and
Aussems
,
J. E. E.
,
2012
, “
Model-Based Dynamic Multi-Parameter Method for Peak Power Estimation of Lithium-Ion Batteries
,”
Applied Energy
,
96
, pp.
77
86
.
35.
Raspa
,
P.
,
Frinconi
,
L.
,
Mancini
,
A.
, and
Cavalletti
,
M.
2011, “
Selection of Lithium-Cells for EV Battery Pack Using Self-Organisation Maps
,”
Batteries
.
36.
Li
,
R.
,
Zhang
,
H.
,
Li
,
W.
,
Zhao
,
X.
, and
Zhou
,
Y.
,
2020
, “
Towards Group Applications: A Critical Review of the Classification Strategies of li-ion Batteries
,”
World Electr. Vehicle J.
,
11
(
3
), p.
58
.
37.
Mauger
,
A.
,
Julien
,
C.
,
Paolella
,
A.
, and
Armand
,
M.
,
2019
, “
Building Better Batteries in the Solid State: A Review
,”
Materials
,
12
(
23
), p.
3892
.
38.
Wang
,
D.
,
Yang
,
F.
,
Gan
,
L.
, and
Li
,
Y.
,
2019
, “
Fuzzy Prediction of Power Lithium-Ion Battery State of Function Based on Fuzzy C-Means Clustering Algorithm
,”
World Electr. Vehicle J.
,
10
(
1
), p.
1
.
39.
Wang
,
H.
,
Ullah
,
M. M.
,
Klaser
,
A.
,
Laptev
,
I.
, and
Schmid
,
C.
,
2009
, “
Evaluation of Local Spatio-Temporal Features of Action Recognition
,”
British Machine Vision Conference
,
London
,
Sept. 8–10
, pp.
1
11
.
40.
Bernard
,
A. A. O. T.
, and
Zhang
,
W.
,
2015
, “
Thermal Management of Lithium-Ion Battery Pack With Liquid Cooling
,”
2015 31st Thermal Measurement, Modeling & Management Symposium (SEMI-THERM)
,
San Jose, CA
,
Mar. 15–19
, pp.
298
302
.
41.
Wang
,
Q.
,
Jiang
,
B.
,
Li
,
B.
, and
Yan
,
Y.
,
2016
, “
A Critical Review of Thermal Management Models and Solutions of Li-Ion Batteries for the Development of Pure Electric Vehicles
,”
Renew. Sust. Energy Rev.
,
64
, pp.
106
128
.
42.
Ouyang
,
D.
,
Chen
,
M.
,
Huang
,
Q.
,
Weng
,
J.
,
Wang
,
Z.
, and
Wang
,
J.
,
2019
, “
A Review on the Thermal Hazards of the Li-Ion Battery and the Corresponding Counter Measures
,”
Appl. Sci.
,
1
(
1
), pp.
1
10
.
43.
Bhattacharjee
,
A.
,
Mohanty
,
R.
, and
Ghosh
,
A.
,
2020
, “
Design of an Optimized Thermal Management System for Li-Ion Batteries Under Different Discharging Conditions
,”
Energies
,
13
(
21
), pp.
1
21
.
44.
Wang
,
Z.
,
Li
,
X.
,
Zhang
,
G.
,
Youfu
,
L. V.
,
Wang
,
C.
,
He
,
F.
,
Yang
,
C.
, and
Yang
,
C.
,
2017
, “
Thermal Investigation for Lithium-Ion Battery Module With Different Phase-Changing Materials
,”
RSC Adv.
,
7
(
68
), pp.
42909
42918
.
45.
Kiani
,
M.
,
Ansari
,
A.
, and
Houshfar
,
E.
,
2020
, “
Hybrid Thermal Management of Li-Ion Batteries Using Nao-Fluid, Metal-Foam & PCM: An Integrated Numerical Experimental Approach
,”
J. Therm. Anal. Calorim.
,
141
(
39
), pp.
1703
1715
.
46.
Han
,
T.
,
Khaligi
,
B.
,
Yen
,
C.
, and
Kaushik
,
S.
,
2018
, “
Lithium-Ion Pack Thermal Management-Liquid vs Air-Cooling
,”
ASME J. Therm. Sci. Eng. Appl.
,
11
(
2
), p.
021009
.
47.
Yi
,
Y.
,
Li
,
W.
,
Xiao
,
M.
, and
Gao
,
L.
,
2019
, “
A set Strategy-Based Approach for Multidisciplinary Robust Design Optimization Under Interval Uncertainty
,”
Adv. Mech. Eng.
,
11
(
1
), p.
1687814018820383
.
48.
Brandl
,
M.
,
Gall
,
H.
, and
Wenger
,
M.
,
2012
, “
Batteries and Battery Management System for Electric Vehicles
,”
Design, Automation and Test in Europe Conference & Exhibition Germany.
49.
Gao
,
Z.
,
Chin
,
C.
,
Chiew
,
J.
,
Jia
,
J.
, and
Zhang
,
C.
,
2017
, “
Design and Implementation of a Smart Lithium-Ion Battery System With Real-Tie Fault Diagnosis Capability for EVs
,”
Energies
,
10
(
10
), pp.
1
15
.
50.
Nizam
,
M.
,
Maghfiroh
,
H.
,
Rosadi
,
R. A.
, and
Kusumputri
,
K. D. U.
,
2020
, “
Battery Management System Design for Lithium-Ion Batteries
,”
AIP Conf. Proc.
,
2217
, p.
030157
.
51.
Cabrera
,
J.
,
Vega
,
A.
,
Tobojas
,
F.
, and
Deniz
,
V.
,
2014
, “
Design of a Reconfigurable Li-ion Battery Management System
,”
Technologies Applied to Electronics Teaching (TAEE)
,
Bilbao, Spain
,
June 11–13
, pp.
1
6
.
52.
Harper
,
G.
,
Sommerville
,
R.
,
Kendrik
,
E.
, and
Driscoll
,
L.
,
2019
, “
Recycling Lithium-Ion Batteries From Electric Vehicles
,”
Nature
,
575
(
7781
), pp.
75
86
.
53.
Pan
,
L.
,
Zhan
,
R.
, and
Oldenburg
,
Z.
,
2018
, “
Recovery of Active Cathode Materials From Lithium-Ion Batteries Using Froth-Floatation
,”
Sust. Mater. Technol.
,
17
, p.
e00062
.
54.
Gains
,
L.
,
2019
, “
The Future of Automotive Lithium-Ion Battery Recycling: Charting a Sustainable Course
,”
Sust. Mater. Technol.
,
1
(
2
), pp.
2
7
.
55.
Mossali
,
E.
,
Picone
,
N.
,
Gentilini
,
L.
,
Rodriguez
,
O.
,
Perez
,
J. M.
, and
Colledani
,
M.
,
2020
, “
Lithium-Ion Batteries Towards Circular Economy: A Literature Review of Opportunities and Issues of Recycling Treatments
,”
J. Environ. Manage.
,
264
, p.
110500
.
56.
Hafner
,
J.
,
Wolvuton
,
C.
, and
Ceder
,
G.
,
2006
, “
Towards Computational Material Design: The Impact of Density Functional Theory on Material Research
,”
MRS Bull.
,
31
(
9
), pp.
659
668
.
57.
Butler
,
K. T.
,
Gautam
,
G. S.
, and
Canepa
,
P.
,
2019
, “
Designing Materials in Energy Materials Applications With First Principle Calculations
,”
NPJ Comput. Mater.
,
5
(
19
), pp.
1
12
.
58.
Nashed
,
R.
,
Ismail
,
Y.
, and
Allam
,
N. K.
,
2103
, “
Recent Advances in the Use of Density Functional Theory to Design Efficient Solar Energy Based Renewable Systems
,”
J. Renew. Sust. Energy
,
5
(
2
), p.
022701
.
59.
Neugebauer
,
J.
, and
Hickel
,
T.
,
2013
, “
Density Functional Theory in Material Science
,”
WIREs Comput. Mol. Sci.
,
3
(
5
), pp.
438
448
.
60.
Schleder
,
G. R.
,
Padhila
,
A. C. M.
,
Acosta
,
C. M.
, and
Fazzio
,
A.
,
2019
, “
From DFT to Machine Learning: Recent Approaches to Material Science—A Review
,”
J. Phys. Mater.
,
2
(
3
), p.
032001
.
61.
Aliano
,
A.
, and
Cicero
,
G.
,
2012
, “Ab-Initio DFT Simulations of Nanostructures,”
Encyclopaedia of Nanotechnology
,
Springer
,
Dordrecht
.
62.
Gupta
,
D. K.
,
Lanelaar
,
M.
,
Barink
,
M.
, and
Van Keulen
,
F.
,
2014
, “
Topology Optimization : An Effective Method for Designing Front Metallization Patterns of Solar Cells
,”
Photovoltaic Specialist Conference (PVSC)
,
Denver, CO
,
June 8–13
, pp.
2471
2475
.
63.
Mei
,
W.
,
Chen
,
H.
,
Sun
,
J.
, and
Wang
,
Q.
,
2019
, “
The Effect of Electrode Design Parameters on Battery Performance and Optimization of Electrode Thickness Based on Electrochemical-Thermal Coupling Model
,”
Sust. Energy Fuels
,
3
(
1
), pp.
148
165
.
64.
Kim
,
J.-S.
,
Lee
,
D.-C.
,
Lee
,
J.-J.
, and
Kim
,
C.-W.
,
2020
, “
Optimization for Maximum Specific Energy Density of a Lithium-Ion Battery Using Progressive Quadratic Response Surface Method and Design of Experiments
,”
Sci. Rep.
,
10
(
1
), p.
15586
.
65.
Yoon
,
G. H.
, and
Park
,
J.
,
2010
, “
Topological Design of Electrode Shapes for Dielectrophoresis Based Devices
,”
J. Electrostat.
,
68
(
6
), pp.
475
486
.
66.
Kim
,
C.
,
Jeong
,
K. M.
,
Kim
,
K.
, and
Yi
,
C. W.
,
2015
, “
Effects of Capacity Ratios Between Anode and Cathode on Electrochemical Properties of Lithium Polymer Batteries
,”
Electrochem. Acta
,
155
, pp.
431
436
.
67.
Liu
,
C.
, and
Liu
,
L.
,
2017
, “
Optimal Design of Li-Ion Batteries Through Multi-Physics Modelling and Multi-Objective Optimization
,”
J. Electrochem. Soc.
,
164
(
11
), pp.
E3254
E3264
.
68.
Schmitt
,
J.
,
Raatz
,
A.
,
Dietrich
,
F.
,
Droder
,
K.
, and
Hesselbach
,
J.
,
2014
, “
Process and Performance Optimization by Selective Assembly of Battery Electrodes
,”
CIRP Annals
,
63
(
1
), pp.
9
12
.
69.
Ng
,
M. F.
,
Zhao
,
J.
,
Yan
,
Q.
,
Conduit
,
G.
, and
Sen
,
Z.
,
2020
, “
Predicting the State of Charge and Health of Batteries Using Data-Driven Machine Learning
,”
Nat. Machine Intelligence
,
2
, pp.
161
170
.
70.
Severson
,
K. A.
,
Attia
,
P. M.
,
Jin
,
N.
,
Perkins
,
N.
,
Jiang
,
B.
,
Yang
,
Z.
,
Chen
,
M. H.
,
Aykol
,
M.
,
Herring
,
P.
,
Harris
,
S.
,
Bazant
,
M.
,
Chueh
,
W. C.
, and
Braatz
,
R. D.
,
2019
, “
Data Driven Prediction of Battery Cycle Life Before Capacity Degradation
,”
Nat. Energy
,
4
(
5
), pp.
383
391
.
71.
Lu
,
L.
,
Han
,
X.
,
Li
,
J.
,
Hua
,
J.
, and
Ouyang
,
M.
,
2013
, “
A Review on the Key Issues for Lithium-Ion Battery Management in Electric Vehicles
,”
J. Power Sources
,
226
, pp.
272
288
.
72.
Johnson
,
V. H.
,
2002
, “
Battery Performance Models in ADVISOR
,”
J. Power Sources
,
110
, pp.
321
329
.
73.
Yang
,
D.
,
Wang
,
Y.
,
Pan
,
R.
,
Chen
,
R.
, and
Chen
,
Z.
,
2017
, “
A Neural Network Based SOH Estimation of Lithium-Ion Battery in Electric Vehicles
,”
Energy Proc.
,
105
, pp.
2059
2064
.
74.
Klass
,
V.
,
Behm
,
M.
, and
Lindbergh
,
G.
,
2014
, “
A Support Vector Machine Based State of Health Estimation Method for Lithium-Ion Batteries Under EV Operation
,”
J. Power Sources
,
270
, pp.
262
272
.
75.
Jia
,
J.
,
Liang
,
J.
,
Shi
,
Y.
, and
Wen
,
J.
,
2020
, “
SOH & RUL Prediction of Lithium-Ion atteries Based on Gaussian Process Regression With Indirect Health Indicators
,”
Energies
,
13
(
2
), pp.
1
20
.
76.
Lee
,
H.
,
Park
,
J.
, and
Kim
,
J.
,
2019
, “
Incremental Capacity Curve Peak Points Based Regression Analysis for the SOH Prediction of a Retired LiNiCoAlO2 Series/Parallel Configured Battery Pack
,”
Electronics
,
8
(
10
), p.
1118
.
77.
Li
,
Y.
,
Zou
,
C.
,
Berecibar
,
M.
,
Nanini-Maury
,
E.
,
Chan
,
J. C. W.
,
van den Bossche
,
P.
,
Van Mierlo
,
J.
, and
Omar
,
N.
,
2018
, “
Random Forest Regression for Online Capacity Estimation of Lithium-Ion Batteries
,”
Appl. Energy
,
232
, pp.
197
210
.
78.
Pop
,
V.
,
Bergveld
,
H. J.
,
Notten
,
P. H. L.
, and
Regtein
,
P. P. L.
,
2005
, “
State of the Art of Battery State of Charge Determination
,”
Meas. Sci. Technol.
,
16
(
12
), pp.
93
110
.
79.
Li
,
W.
,
Chen
,
S.
,
Peng
,
X.
,
Xiao
,
M.
,
Gao
,
L.
,
Garg
,
A.
, and
Bao
,
N.
,
2019
, “
A Comprehensive Approach for the Clustering of Similar Performance Cells for the Design of a Li-Ion Battery Module for Electric Vehicles
,”
Engineering
,
5
(
4
), pp.
795
802
.
80.
Ye
,
M.
,
Song
,
X.
,
Xiong
,
R.
, and
Sun
,
F.
,
2019
, “
A Novel Dynamic Performance Analysis and Evaluation Model of Series-Parallel Connected Battery Pack for Electric Vehicles
,”
IEEE Access
,
99
, pp.
1
1
.
81.
Bruen
,
T.
, and
Marco
,
J.
,
2016
, “
Modelling and Experimental Evaluation of Parallel Connected Li-Ion Cells for an Electric Vehicle Battery System
,”
J. Power Sources
,
310
, pp.
91
101
.
82.
Wang
,
X.
,
Li
,
M.
,
Liu
,
Y.
,
Sun
,
W.
,
Song
,
X.
, and
Zhang
,
J.
,
2017
, “
Surrogate Based Multi-Disciplinary Design Optimization of Li-Ion Battery Thermal Management System in Electric Vehicles
,”
Struct. Multi-Discip. Optimization
,
56
(
6
), pp.
1555
1570
.
83.
Xie
,
J.
,
Zang
,
M.
,
Wang
,
S.
, and
Ge
,
Z.
,
2017
, “
Optimization Investigation on the Liquid Cooling Heat Dissipation Structure for the Lithium-Ion Battery Package in Electric Vehicles
,”
Proc. Inst. Mech. Eng. Part D: J. Automobile Eng.
,
231
(
13
), pp.
1735
1750
.
84.
Wang
,
N.
,
Li
,
C.
,
Li
,
W.
,
Huang
,
M.
, and
Qi
,
D.
,
2021
, “
Effect Analysis on Performance Enhancement of a Novel Air Cooling Battery Thermal Management System With Spoilers
,”
Appl. Therm. Eng.
,
192
, p.
116932
.
85.
Li
,
W.
,
Peng
,
X.
,
Xiao
,
M.
,
Garg
,
A.
, and
Gao
,
L.
, “
Multi-Objective Design Optimization for Mini-Channel Cooling Battery Thermal Management System in Electric Vehicle
,”
Int. J. Energy Res.
,
43
(
8
), pp.
3668
3680
.
86.
Li
,
W.
,
Gao
,
L.
,
Garg
,
A.
, and
Xiao
,
M.
,
2020
, “
Multidisciplinary Robust Design Optimization Under Parameter and Metamodeling Uncertainties
,”
Eng. Comput.
, pp.
1
18
.
87.
Wu
,
B.
,
Widanage
,
W. D.
,
Yang
,
S.
, and
Liu
,
X.
,
2020
, “
Battery Digital Twin: Perspective on the Fusion of Models, Data and Artificial Intelligence for Smart Battery Management Systems
,”
Energy AI
,
1
, p.
100016
.
88.
Li
,
W.
,
Kwiecien
,
M.
,
Badeda
,
J.
,
Jöst
,
D.
,
Schulte
,
D.
, and
Sauer
,
D. U.
,
2020
, “
Digital Twin for Battery Systems: Cloud Battery Management System With Online State of Charge and State of Health Estimation
,”
J. Energy Storage
,
30
, p.
101557
.
89.
Gaines
,
L.
,
2018
, “
Lithium-Ion Battery Recycling Process Research Towards Sustainable Course
,”
Sust. Mater. Technol.
,
17
, p.
e00068
.
90.
Zhou
,
L.
,
Garg
,
A.
,
Zheng
,
J.
,
Gao
,
L.
, and
Ch
,
K. Y.
,
2020
, “
Battery Pack Recycling Challenges for the Year 2030: Recommended Solutions Based on Intelligent Robotics for Safe and Efficient Battery Disassembly, Residual Energy Detection and Secondary Utilization
,”
Energy Storage
,
3
(
3
), pp.
1
12
.
91.
Shui
,
L.
,
Chen
,
F.
,
Garg
,
A.
,
Peng
,
X.
,
Bao
,
N.
, and
Zhang
,
J.
, “
Design Optimization of Battery Pack Enclosure for Electric Vehicles
,”
Struct. Multi-Discip. Optimization
,
58
(
1
), pp.
337
347
.
You do not currently have access to this content.