Abstract

Battery state of charge (SOC) estimation is one of the main functions of the battery management system in electric vehicles. If the actual SOC of the battery differs significantly from the estimated value, it can lead to improper battery usage, resulting in unexpected rapid voltage drops or increases, which can affect driving safety. Therefore, high-accuracy SOC estimation is of great importance for battery management and usage. Currently used SOC estimation methods suffer from issues such as strong dependence on model parameters, error propagation from measurements, and sensitivity to initial values. In this study, we propose a high-precision SOC estimation strategy based on deep belief network (DBN) feature extraction and extended Kalman filter (EKF) for smooth output. The proposed strategy has been rigorously tested under different temperature conditions using the dynamic stress test (DST) and urban dynamometer driving schedule (US06) driving cycles. The mean absolute error (MAE) and root-mean-square error (RMSE) of the proposed strategy are controlled within 1.1% and 1.2%, respectively. This demonstrates the high-precision estimation achieved. To further validate the generality of this strategy, we also apply it to graphene batteries and conduct tests under US06 and highway fuel economy test (HWFET) driving cycles at temperatures of 25 °C and −10 °C. The test results show MAE of 0.47% and 2.01%, respectively.

References

1.
Li
,
H.
,
Qu
,
Z.
,
Xu
,
T.
,
Wang
,
Y.
,
Fan
,
X.
,
Jiang
,
H.
,
Yuan
,
C.
, and
Chen
,
L.
,
2022
, “
SOC Estimation Based on the Gas–Liquid Dynamics Model Using Particle Filter Algorithm
,”
Int. J. Energy Res.
,
46
(
15
), pp.
22913
22925
.
2.
Qu
,
J.
,
Liu
,
F.
,
Ma
,
Y.
, and
Fan
,
J.
,
2019
, “
A Neural-Network-Based Method for RUL Prediction and SOH Monitoring of Lithium-Ion Battery
,”
IEEE Access
,
7
, pp.
87178
87191
.
3.
Xiong
,
X.
,
Wang
,
S.
,
Fernandez
,
C.
,
Yu
,
C.
,
Zou
,
C.
, and
Jiang
,
C.
,
2020
, “
A Novel Practical State of Charge Estimation Method: An Adaptive Improved Ampere-Hour Method Based on Composite Correction Factor
,”
Int. J. Energy Res.
,
44
(
14
), pp.
11385
11404
.
4.
Li
,
D.
,
Li
,
S.
,
Zhang
,
S.
,
Sun
,
J.
,
Wang
,
L.
, and
Wang
,
K.
,
2022
, “
Aging State Prediction for Supercapacitors Based on Heuristic Kalman Filter Optimization Extreme Learning Machine
,”
Energy
,
250
, p.
123773
.
5.
Shu
,
X.
,
Li
,
G.
,
Zhang
,
Y.
,
Shen
,
S.
,
Chen
,
Z.
, and
Liu
,
Y.
,
2021
, “
Stage of Charge Estimation of Lithium-Ion Battery Packs Based on Improved Cubature Kalman Filter With Long Short-Term Memory Model
,”
IEEE Trans. Transp. Electrification
,
7
(
3
), pp.
1271
1284
.
6.
Cao
,
W.
,
Wang
,
S.
,
Fernandez
,
C.
,
Zou
,
C.
,
Yu
,
C.
, and
Li
,
X.
,
2019
, “
A Novel Adaptive State of Charge Estimation Method of Full Life Cycling Lithium-Ion Batteries Based on the Multiple Parameter Optimization
,”
Energy Sci. Eng.
,
7
, pp.
1544
1556
.
7.
Naha
,
A.
,
Han
,
S.
,
Agarwal
,
S.
,
Guha
,
A.
,
Khandelwal
,
A.
,
Tagade
,
P.
,
Hariharan
,
K. S.
,
Kolake
,
S. M.
,
Yoon
,
J.
, and
Oh
,
B.
,
2020
, “
An Incremental Voltage Difference Based Technique for Online State of Health Estimation of Li-Ion Batteries
,”
Sci. Rep.
,
10
(
1
), p.
9526
.
8.
Li
,
Y.
,
Guo
,
H.
,
Qi
,
F.
,
Guo
,
Z.
, and
Li
,
M.
,
2020
, “
Comparative Study of the Influence of Open Circuit Voltage Tests on State of Charge Online Estimation for Lithium-Ion Batteries
,”
IEEE Access
,
8
, pp.
17535
17547
.
9.
Yu
,
Q.
,
Wan
,
C.
,
Li
,
J.
,
Lixin
,
E.
,
Zhang
,
X.
,
Huang
,
Y.
, and
Liu
,
T.
,
2021
, “
An Open Circuit Voltage Model Fusion Method for State of Charge Estimation of Lithium-Ion Batteries
,”
Energies
,
14
, p.
1797
.
10.
Wang
,
S.
,
Takyi-Aninakwa
,
P.
,
Fan
,
Y.
,
Yu
,
C.
,
Jin
,
S.
,
Fernandez
,
C.
, and
Stroe
,
D.-I.
,
2022
, “
A Novel Feedback Correction-Adaptive Kalman Filtering Method for the Whole-Life-Cycle State of Charge and Closed-Circuit Voltage Prediction of Lithium-Ion Batteries Based on the Second-Order Electrical Equivalent Circuit Model
,”
Int. J. Electr. Power Energy Syst.
,
139
, p.
108020
.
11.
Rodríguez-Iturriaga
,
P.
,
Alonso-del-Valle
,
J.
,
Rodríguez-Bolívar
,
S.
,
Anseán
,
D.
,
Viera
,
J. C.
, and
López-Villanueva
,
J. A.
,
2022
, “
A Novel Dual Fractional-Order Extended Kalman Filter for the Improved Estimation of Battery State of Charge
,”
J. Energy Storage
,
56
, p.
105810
.
12.
Wang
,
L.
,
Song
,
Z.
,
Zhu
,
L.
, and
Jiang
,
J.
,
2023
, “
Fast Electrochemical Impedance Spectroscopy of Lithium-Ion Batteries Based on the Large Square Wave Excitation Signal
,”
IScience
,
26
(
4
), p.
106463
.
13.
Sheng
,
C.
,
Fu
,
J.
,
Li
,
D.
,
Jiang
,
C.
,
Guo
,
Z.
,
Li
,
B.
,
Lei
,
J.
, et al
,
2022
, “
Energy Management Strategy Based on Health State for a PEMFC/Lithium-Ion Batteries Hybrid Power System
,”
Energy Convers. Manage.
,
271
, p.
116330
.
14.
Mao
,
S.
,
Han
,
M.
,
Han
,
X.
,
Lu
,
L.
,
Feng
,
X.
,
Su
,
A.
,
Wang
,
D.
,
Chen
,
Z.
,
Lu
,
Y.
, and
Ouyang
,
M.
,
2022
, “
An Electrical–Thermal Coupling Model With Artificial Intelligence for State of Charge and Residual Available Energy Co-Estimation of LiFePO4 Battery System Under Various Temperatures
,”
Batteries
,
8
(
10
), p.
140
.
15.
Tian
,
Y.
,
Huang
,
Z.
,
Tian
,
J.
, and
Li
,
X.
,
2022
, “
State of Charge Estimation of Lithium-Ion Batteries Based on Cubature Kalman Filters With Different Matrix Decomposition Strategies
,”
Energy
,
238
, p.
121917
.
16.
He
,
L.
,
Wang
,
Y.
,
Wei
,
Y.
,
Wang
,
M.
,
Hu
,
X.
, and
Shi
,
Q.
,
2022
, “
An Adaptive Central Difference Kalman Filter Approach for State of Charge Estimation by Fractional Order Model of Lithium-Ion Battery
,”
Energy
,
244
, p.
122627
.
17.
Wu
,
M.
,
Qin
,
L.
, and
Wu
,
G.
,
2021
, “
State of Charge Estimation of Power Lithium-Ion Battery Based on an Adaptive Time Scale Dual Extend Kalman Filtering
,”
J. Energy Storage
,
39
, p.
102535
.
18.
Zheng
,
Y.
,
Gao
,
W.
,
Ouyang
,
M.
,
Lu
,
L.
,
Zhou
,
L.
, and
Han
,
X.
,
2018
, “
State-of-Charge Inconsistency Estimation of Lithium-Ion Battery Pack Using Mean-Difference Model and Extended Kalman Filter
,”
J. Power Sources
,
383
, pp.
50
58
.
19.
Chen
,
Z.
,
Fu
,
Y.
, and
Mi
,
C. C.
,
2013
, “
State of Charge Estimation of Lithium-Ion Batteries in Electric Drive Vehicles Using Extended Kalman Filtering
,”
IEEE Trans. Veh. Technol.
,
62
(
3
), pp.
1020
1030
.
20.
Guo
,
X.
,
Xu
,
X.
,
Geng
,
J.
,
Hua
,
X.
,
Gao
,
Y.
, and
Liu
,
Z.
,
2019
, “
SOC Estimation With an Adaptive Unscented Kalman Filter Based on Model Parameter Optimization
,”
Appl. Sci.
,
9
(
19
), p.
4177
.
21.
Chen
,
Z.
,
Sun
,
H.
,
Dong
,
G.
,
Wei
,
J.
, and
Wu
,
J.
,
2019
, “
Particle Filter-Based State-of-Charge Estimation and Remaining-Dischargeable-Time Prediction Method for Lithium-Ion Batteries
,”
J. Power Sources
,
414
, pp.
158
166
.
22.
Chen
,
X.
,
Shen
,
W.
,
Dai
,
M.
,
Cao
,
Z.
,
Jin
,
J.
, and
Kapoor
,
A.
,
2016
, “
Robust Adaptive Sliding-Mode Observer Using RBF Neural Network for Lithium-Ion Battery State of Charge Estimation in Electric Vehicles
,”
IEEE Trans. Veh. Technol.
,
65
(
4
), pp.
1936
1947
.
23.
Zhengxin
,
J.
,
Qin
,
S.
,
Yujiang
,
W.
,
Hanlin
,
W.
,
Bingzhao
,
G.
, and
Lin
,
H.
,
2021
, “
An Immune Genetic Extended Kalman Particle Filter Approach on State of Charge Estimation for Lithium-Ion Battery
,”
Energy
,
230
, p.
120805
.
24.
Mao
,
X.
,
Song
,
S.
, and
Ding
,
F.
,
2022
, “
Optimal BP Neural Network Algorithm for State of Charge Estimation of Lithium-Ion Battery Using PSO With Levy Flight
,”
J. Energy Storage
,
49
, p.
104139
.
25.
How
,
D. N. T.
,
Hannan
,
M. A.
,
Lipu
,
M. S. H.
,
Sahari
,
K. S. M.
,
Ker
,
P. J.
, and
Muttaqi
,
K. M.
,
2020
, “
State-of-Charge Estimation of Li-Ion Battery in Electric Vehicles: A Deep Neural Network Approach
,”
IEEE Trans. Ind. Appl.
,
56
(
5
), pp.
5565
5574
.
26.
Wei
,
M.
,
Ye
,
M.
,
Li
,
J. B.
,
Wang
,
Q.
, and
Xu
,
X.
,
2020
, “
State of Charge Estimation of Lithium-Ion Batteries Using LSTM and NARX Neural Networks
,”
IEEE Access
,
8
, pp.
189236
189245
.
27.
Manoharan
,
A.
,
Begam
,
K. M.
,
Aparow
,
V. R.
, and
Sooriamoorthy
,
D.
,
2022
, “
Artificial Neural Networks, Gradient Boosting and Support Vector Machines for Electric Vehicle Battery State Estimation: A Review
,”
J. Energy Storage
,
55
, p.
105384
.
28.
Wang
,
S.
,
Takyi-Aninakwa
,
P.
,
Jin
,
S.
,
Yu
,
C.
,
Fernandez
,
C.
, and
Stroe
,
D.-I.
,
2022
, “
An Improved Feedforward-Long Short-Term Memory Modeling Method for the Whole-Life-Cycle State of Charge Prediction of Lithium-Ion Batteries Considering Current-Voltage-Temperature Variation
,”
Energy
,
254
, p.
124224
.
29.
Fasahat
,
M.
, and
Manthouri
,
M.
,
2020
, “
State of Charge Estimation of Lithium-Ion Batteries Using Hybrid Autoencoder and Long Short Term Memory Neural Networks
,”
J. Power Sources
,
469
, p.
228375
.
30.
Cao
,
M.
,
Zhang
,
T.
,
Wang
,
J.
, and
Liu
,
Y.
,
2022
, “
A Deep Belief Network Approach to Remaining Capacity Estimation for Lithium-Ion Batteries Based on Charging Process Features
,”
J. Energy Storage
,
48
, p.
103825
.
31.
Cui
,
Z.
,
Wang
,
L.
,
Li
,
Q.
, and
Wang
,
K.
,
2022
, “
A Comprehensive Review on the State of Charge Estimation for Lithium-Ion Battery Based on Neural Network
,”
Int. J. Energy Res.
,
46
(
5
), pp.
5423
5440
.
32.
Dao
,
V. Q.
,
Dinh
,
M.-C.
,
Kim
,
C. S.
,
Park
,
M.
,
Doh
,
C.-H.
,
Bae
,
J. H.
,
Lee
,
M.-K.
,
Liu
,
J.
, and
Bai
,
Z.
,
2021
, “
Design of an Effective State of Charge Estimation Method for a Lithium-Ion Battery Pack Using Extended Kalman Filter and Artificial Neural Network
,”
Energies
,
14
(
9
), p.
2634
.
33.
Ni
,
Z.
,
Xiu
,
X.
, and
Yang
,
Y.
,
2022
, “
Towards Efficient State of Charge Estimation of Lithium-Ion Batteries Using Canonical Correlation Analysis
,”
Energy
,
254
, p.
124415
.
34.
Cui
,
Z.
,
Kang
,
L.
,
Li
,
L.
,
Wang
,
L.
, and
Wang
,
K.
,
2022
, “
A Combined State-of-Charge Estimation Method for Lithium-Ion Battery Using an Improved BGRU Network and UKF
,”
Energy
,
259
, p.
124933
.
35.
Chen
,
J.
,
Zhang
,
Y.
,
Li
,
W.
,
Cheng
,
W.
, and
Zhu
,
Q.
,
2022
, “
State of Charge Estimation for Lithium-Ion Batteries Using Gated Recurrent Unit Recurrent Neural Network and Adaptive Kalman Filter
,”
J. Energy Storage
,
55
, p.
105396
.
36.
Hartman
,
E. J.
,
Keeler
,
J. D.
, and
Kowalski
,
J. M.
,
1990
, “
Layered Neural Networks With Gaussian Hidden Units as Universal Approximations
,”
Neural Comput.
,
2
(
2
), pp.
210
215
.
37.
Tamilselvan
,
P.
, and
Wang
,
P.
,
2013
, “
Failure Diagnosis Using Deep Belief Learning Based Health State Classification
,”
Reliab. Eng. Syst. Saf.
,
115
, pp.
124
135
.
38.
Schölkopf
,
B.
,
Platt
,
J.
, and
Hofmann
,
T.
,
2007
, “
Greedy Layer-Wise Training of Deep Networks
,”
Advances in Neural Information Processing Systems 19 Proceedings of the 2006 Conference
,
Vancouver, Canada
,
Dec. 4–7
.
39.
University of Maryland
,
2022
, “
INR 18650-20R Battery
,”
University of Maryland
, https://web.calce.umd.edu/batteries/data.htm#INR18650
40.
Zheng
,
X.
, and
Zhang
,
Z.
,
2022
, “
State of Charge Estimation at Different Temperatures Based on Dynamic Thermal Model for Lithium-Ion Batteries
,”
J. Energy Storage
,
48
, p.
104011
.
41.
Pan
,
S. J.
, and
Yang
,
Q.
,
2010
, “
A Survey on Transfer Learning
,”
IEEE Trans. Knowl. Data Eng.
,
22
(
10
), pp.
1345
1359
.
42.
Kollmeyer
,
P.
, and
Skells
,
M.
,
2020
, “
Turnigy Graphene 5000 mA h 65C Li-Ion Battery Data
,” Mendeley Data, V1.
You do not currently have access to this content.