Abstract

Under different usage scenarios of various electric vehicles (EVs), it becomes difficult to estimate the battery state of health (SOH) quickly and accurately. This article proposes an SOH estimation method based on EVs’ charging process history data. First, data processing processes for practical application scenarios are established. Then the health indicators (HIs) that directly or indirectly reflect the driver's charging behavior in the charging process are used as the model's input, and the ensemble empirical mode decomposition (EEMD) is introduced to remove the noise brought by capacity regeneration. Subsequently, the maximum information coefficient (MIC)—principal component analysis (PCA) algorithm is employed to extract significant HIs. Eventually, the global optimal nonlinear degradation relationship between HIs and capacity is learned based on Bayesian-optimized Gaussian process regression (BO-GPR). Approximate battery degradation models for practical application scenarios are obtained. This article validates the proposed method from three perspectives: models, vehicles, and regions. The results show that the method has better prediction accuracy and generalization capability and lower computational cost, which provides a solution for future online health state prediction based on a large amount of real-time operational data.

References

1.
He
,
H.
,
Sun
,
F.
,
Wang
,
Z.
,
Lin
,
C.
,
Zhang
,
C.
,
Xiong
,
R.
,
Deng
,
J.
,
Zhu
,
X.
,
Xie
,
P.
,
Zhang
,
S.
, and
Wei
,
Z.
,
2022
, “
China’s Battery Electric Vehicles Lead the World: Achievements in Technology System Architecture and Technological Breakthroughs
,”
Green Energy Intell. Transp.
,
1
(
1
), p.
100020
.
2.
Liu
,
D.
,
Xu
,
L.
,
Sadia
,
U. H.
, and
Wang
,
H.
,
2021
, “
Evaluating the CO2 Emission Reduction Effect of China's Battery Electric Vehicle Promotion Efforts
,”
Atmos. Pollut. Res.
,
12
(
7
), p.
101115
.
3.
Chen
,
Q.
,
Lai
,
X.
,
Gu
,
H.
,
Tang
,
X.
,
Gao
,
F.
,
Han
,
X.
, and
Zheng
,
Y.
,
2022
, “
Investigating Carbon Footprint and Carbon Reduction Potential Using a Cradle-to-Cradle LCA Approach on Lithium-Ion Batteries for Electric Vehicles in China
,”
J. Clean. Prod.
,
369
, p.
133342
.
4.
Liu
,
Y.
,
2022
, National Development and Reform Commission: China's New Energy Vehicle Development Enters Full Market Expansion Period, http://www.chinanews.com.cn/cj/2022/09-19/9855804.shtml
5.
Department EM
,
2022
, In the First Quarter of the Country, there were 219,000 fires, and 625 people died!, https://www.119.gov.cn/gk/sjtj/2022/28761.shtml
6.
Tian
,
H. X.
,
Qin
,
P. L.
,
Li
,
K.
, and
Zhao
,
Z.
,
2020
, “
A Review of the State of Health for Lithium-Ion Batteries: Research Status and Suggestions
,”
J. Clean. Prod.
,
261
, p.
120813
.
7.
Hu
,
X. S.
,
Xu
,
L.
,
Lin
,
X. K.
, and
Pecht
,
M.
,
2020
, “
Battery Lifetime Prognostics
,”
Joule
,
4
(
2
), pp.
310
346
.
8.
Guha
,
A.
,
Patra
,
A.
, and
Vaisakh
,
K. V.
,
2017
, “
Remaining Useful Life Estimation of Lithium-Ion Batteries Based on the Internal Resistance Growth Model
,”
2017 Indian Control Conference (ICC)
,
Guwahati, India
,
Jan. 4–6
, pp.
33
38
.
9.
Goh
,
H. H.
,
Lan
,
Z. T.
,
Zhang
,
D. D.
,
Dai
,
W.
,
Kurniawan
,
T. A.
, and
Goh
,
K. C.
,
2022
, “
Estimation of the State of Health (SOH) of Batteries Using Discrete Curvature Feature Extraction
,”
J. Energy Storage
,
50
, p.
104646
.
10.
Li
,
X. Y.
,
Wang
,
Z. P.
, and
Yan
,
J. Y.
,
2019
, “
Prognostic Health Condition for Lithium Battery Using the Partial Incremental Capacity and Gaussian Process Regression
,”
J. Power Sources
,
421
, pp.
56
67
.
11.
Liu
,
D. T.
,
Zhou
,
J. B.
,
Liao
,
H. T.
,
Peng
,
Y.
, and
Peng
,
X. Y.
,
2015
, “
A Health Indicator Extraction and Optimization Framework for Lithium-Ion Battery Degradation Modeling and Prognostics
,”
IEEE Trans. Syst. Man Cybern. Syst.
,
45
(
6
), pp.
915
928
.
12.
Guo
,
P. Y.
,
Cheng
,
Z.
, and
Yang
,
L.
,
2019
, “
A Data-Driven Remaining Capacity Estimation Approach for Lithium-Ion Batteries Based on Charging Health Feature Extraction
,”
J. Power Sources
,
412
, pp.
442
450
.
13.
Li
,
Y.
,
Abdel-Monema
,
M.
,
Gopalakrishnan
,
R.
,
Berecibar
,
M.
,
Nanini-Maury
,
E.
,
Omar
,
N.
,
van den Bossche,
P.
, and
Van Mierlo,
J.
,
2018
, “
A Quick On-Line State of Health Estimation Method for Li-Ion Battery With Incremental Capacity Curves Processed by Gaussian Filter (vol 373, pg 40, 2018)
,”
J. Power Sources
,
393
, p.
230
.
14.
Tang
,
X. P.
,
Zou
,
C. F.
,
Yao
,
K.
,
Chen
,
G. H.
,
Liu
,
B. Y.
,
He
,
Z. W.
, and
Gao
,
F.
,
2018
, “
A Fast Estimation Algorithm for Lithium-Ion Battery State of Health
,”
J. Power Sources
,
396
, pp.
453
458
.
15.
Severson
,
K. A.
,
Attia
,
P. M.
,
Jin
,
N.
,
Perkins
,
N.
,
Jiang
,
B.
,
Yang
,
Z.
,
Chen
,
M. H.
,
Aykol
,
M.
,
Herring
,
P. K.
,
Fraggedakis
,
D.
,
Bazant
,
M. Z.
,
Harris
,
S. J.
,
Chueh
,
W. C.
, and
Braatz
,
R. D.
,
2019
, “
Data-Driven Prediction of Battery Cycle Life Before Capacity Degradation
,”
Nat. Energy
,
4
(
5
), pp.
383
391
.
16.
Li
,
X. Y.
,
Yuan
,
C. G.
,
Wang
,
Z. P.
,
He
,
J. T.
, and
Yu
,
S. K.
,
2022
, “
Lithium Battery State-of-Health Estimation and Remaining Useful Lifetime Prediction Based on Non-Parametric Aging Model and Particle Filter Algorithm
,”
Etransportation
,
11
, p.
100156
.
17.
Hosseininasab
,
S.
,
Lin
,
C. W.
,
Pischinger
,
S.
,
Stapelbroek
,
M.
, and
Vagnoni
,
G.
,
2022
, “
State-of-Health Estimation of Lithium-Ion Batteries for Electrified Vehicles Using a Reduced-Order Electrochemical Model
,”
J. Energy Storage
,
52
, p.
104684
.
18.
Liu
,
F.
,
Shao
,
C.
,
Su
,
W. X.
, and
Liu
,
Y.
,
2022
, “
Online Joint Estimator of Key States for Battery Based on a New Equivalent Circuit Model
,”
J. Energy Storage
,
52
, p.
104780
.
19.
Kim
,
H.-K.
, and
Lee
,
K.-J.
,
2023
, “
Use of a Multiphysics Model to Investigate the Performance and Degradation of Lithium-Ion Battery Packs With Different Electrical Configurations
,”
Energy
,
262
, p.
125424
.
20.
Lai
,
X.
,
Weng
,
J.
,
Huang
,
Y.
,
Yuan
,
M.
,
Yao
,
Y.
,
Han
,
X.
, and
Zheng
,
Y.
,
2022
, “
A Joint State-of-Health and State-of-Energy Estimation Method for Lithium-Ion Batteries Through Combining the Forgetting Factor Recursive Least Squares and Unscented Kalman Filter
,”
Measurement
,
205
, p.
112187
.
21.
Ouyang
,
T.
,
Wang
,
C.
,
Xu
,
P.
,
Ye
,
J.
, and
Liu
,
B.
,
2023
, “
Prognostics and Health Management of Lithium-Ion Batteries Based on Modeling Techniques and Bayesian Approaches: A Review
,”
Sustain. Energy Technol. Assess.
,
55
, p.
102915
.
22.
Zhao
,
S.
,
Zhang
,
C.
, and
Wang
,
Y.
,
2022
, “
Lithium-Ion Battery Capacity and Remaining Useful Life Prediction Using Board Learning System and Long Short-Term Memory Neural Network
,”
J. Energy Storage
,
52
, p.
104901
.
23.
Lin
,
C. P.
,
Xu
,
J.
,
Shi
,
M. J.
, and
Mei
,
X. S.
,
2022
, “
Constant Current Charging Time Based Fast State-of-Health Estimation for Lithium-Ion Batteries
,”
Energy
,
247
, p.
123556
.
24.
Yan
,
N.
,
Yao
,
Y.-B.
,
Jia
,
Z.-D.
,
Liu
,
L.
,
Dai
,
C.-T.
,
Li
,
Z.-G.
,
Zhang
,
Z.-H.
,
Li
,
W.
,
Wang
,
L.
, and
Wang
,
P.-F.
,
2022
, “
Online Battery Health Diagnosis for Electric Vehicles Based on DTW-XGBoost
,”
Energy Rep.
,
8
, pp.
121
128
.
25.
Xia
,
Z.
, and
Qahouq
,
J. A. A.
,
2021
, “
Lithium-Ion Battery Ageing Behavior Pattern Characterization and State-of-Health Estimation Using Data-Driven Method
,”
IEEE Access
,
9
, pp.
98287
98304
.
26.
Chen
,
J. C.
,
Chen
,
T. L.
,
Liu
,
W. J.
,
Cheng
,
C. C.
, and
Li
,
M. G.
,
2021
, “
Combining Empirical Mode Decomposition and Deep Recurrent Neural Networks for Predictive Maintenance of Lithium-Ion Battery
,”
Adv. Eng. Inform.
,
50
, p.
101405
.
27.
Gu
,
X.
,
See
,
K. W.
,
Li
,
P.
,
Shan
,
K.
,
Wang
,
Y.
,
Zhao
,
L.
,
Lim
,
K.C.
, and
Zhang
,
N.
,
2023
, “
A Novel State-of-Health Estimation for the Lithium-Ion Battery Using a Convolutional Neural Network and Transformer Model
,”
Energy
,
262
, p.
125501
.
28.
Saha
,
B.
, and
Goebel
,
K.
,
2007
,
Battery Data Set, NASA Ames Prognostics Data Repository
,
NASA Ames Research Center
,
CA
.
29.
Calce
,
M. P.
,
Battery Data. Center for Advanced Life Cycle EngineeringCALCE
,
University of Maryland
,
College Park, MD
.
30.
Li
,
S.
,
He
,
H.
,
Zhao
,
P.
, and
Cheng
,
S.
,
2022
, “
Health-Conscious Vehicle Battery State Estimation Based on Deep Transfer Learning
,”
Appl. Energy
,
316
, p.
119120
.
31.
Hou
,
Y.
,
Zhang
,
Z.
,
Liu
,
P.
,
Song
,
C.
, and
Wang
,
Z.
,
2021
, “
Research on a Novel Data-Driven Aging Estimation Method for Battery Systems in Real-World Electric Vehicles
,”
Adv. Mech. Eng.
,
13
(
7
), p.
168781402110277
.
32.
Preger
,
Y.
,
Barkholtz
,
H. M.
,
Fresquez
,
A.
,
Campbell
,
D. L.
,
Juba
,
B. W.
,
Romàn-Kustas
,
J.
,
Ferreira
,
S. R.
, and
Chalamala
,
B.
,
2020
, “
Degradation of Commercial Lithium-Ion Cells as a Function of Chemistry and Cycling Conditions
,”
J. Electrochem. Soc.
,
167
(
12
), p.
120532
.
33.
Reshef
,
D. N.
,
Reshef
,
Y. A.
,
Finucane
,
H. K.
,
Grossman
,
S. R.
,
McVean
,
G.
,
Turnbaugh
,
P. J.
,
Lander
,
E. S.
,
Mitzenmacher
,
M.
, and
Sabeti
,
P. C.
,
2011
, “
Detecting Novel Associations in Large Data Sets
,”
Science
,
334
(
6062
), pp.
1518
1524
.
34.
Huang
,
N. E.
,
Shen
,
Z.
,
Long
,
S. R.
,
Wu
,
M. C.
,
Shih
,
H. H.
,
Zheng
,
Q.
,
Yen
,
N. C.
,
Tung
,
C. C.
, and
Liu
,
H. H.
,
1998
, “
The Empirical Mode Decomposition and the Hilbert Spectrum for Nonlinear and Non-Stationary Time Series Analysis
,”
Proc. R. Soc. A: Math. Phys. Eng. Sci.
,
454
(
1971
), pp.
903
995
.
35.
Zhang
,
C.
,
Zhao
,
S.
, and
He
,
Y.
,
2022
, “
An Integrated Method of the Future Capacity and RUL Prediction for Lithium-Ion Battery Pack
,”
IEEE Trans. Veh. Technol.
,
71
(
3
), pp.
2601
2613
.
36.
Wu
,
Z.
, and
Huang
,
N. E.
,
2009
, “
Ensemble Empirical Mode Decomposition: A Noise-Assisted Data Analysis Method
,”
Adv. Adapt. Data Analysis
,
1
(
1
), pp.
1
41
.
37.
Song
,
Y. C.
,
Liu
,
D. T.
,
Hou
,
Y. D.
,
Yu
,
J. X.
, and
Peng
,
Y.
,
2018
, “
Satellite Lithium-Ion Battery Remaining Useful Life Estimation With an Iterative Updated RVM Fused With the KF Algorithm
,”
Chinese J. Aeronaut.
,
31
(
1
), pp.
31
40
.
38.
Jiang
,
B. B.
,
Berliner
,
M. D.
,
Lai
,
K.
,
Asinger
,
P. A.
,
Zhao
,
H. B.
,
Herring
,
P. K.
,
Bazant
,
M. Z.
, and
Braatz
,
R. D.
,
2022
, “
Fast Charging Design for Lithium-Ion Batteries via Bayesian Optimization
,”
Appl. Energy
,
307
, p.
118244
.
39.
Frazier
,
P. I.
,
2018
, “
A Tutorial on Bayesian Optimization
,”
arXiv e-prints
. https://arxiv.org/abs/1807.02811
40.
Chen
,
Z.
,
Shi
,
N.
,
Ji
,
Y.
,
Niu
,
M.
, and
Wang
,
Y.
,
2021
, “
Lithium-Ion Batteries Remaining Useful Life Prediction Based on BLS-RVM
,”
Energy
,
234
, p.
121269
.
41.
Cai
,
L.
,
Lin
,
J.
, and
Liao
,
X.
,
2022
, “
A Data-Driven Method for State of Health Prediction of Lithium-Ion Batteries in a Unified Framework
,”
J. Energy Storage
,
51
, p.
104371
.
42.
Ecker
,
M.
,
Shafiei Sabet
,
P.
, and
Sauer
,
D. U.
,
2017
, “
Influence of Operational Condition on Lithium Plating for Commercial Lithium-Ion Batteries—Electrochemical Experiments and Post-Mortem-Analysis
,”
Appl. Energy
,
206
, pp.
934
946
.
You do not currently have access to this content.