Abstract

This study proposes a stepped-channel liquid-cooled battery thermal management system based on lightweight. The impact of channel width, cell-to-cell lateral spacing, contact height, and contact angle on the effectiveness of the thermal control system (TCS) is investigated using numerical simulation. The weight sensitivity factor is adopted to evaluate the effect of TCS weight (mTCS) on the maximum temperature (Tmax) of battery pack. Results suggest that the channel width plays the most critical role, followed by cell-to-cell lateral spacing and contact angle, while the contact height has minimal influence. Four parameters that affect the thermal balance performance of battery pack, including the number of channels, and baffles, baffle angle, and coolant inlet velocity, are presented using orthogonal experiment. Results indicate that the number of channels and baffle angle have a significant influence on the thermal balance of battery pack, while thermal performance is largely insensitive to coolant inlet velocity and the number of baffles. Based on the analysis stated in this work, an improved design of the TCS is presented that reduces weight by 54.08% while increasing Tmax only by 2.52 K.

References

1.
Pan
,
Y.
, and
Dong
,
F.
,
2023
, “
Factor Substitution and Development Path of the New Energy Market in the BRICS Countries Under Carbon Neutrality: Inspirations From Developed European Countries
,”
Appl. Energy
,
331
, p.
120442
.
2.
Liu
,
C.
,
Wu
,
D.
,
Li
,
Y.
, and
Du
,
Y.
,
2021
, “
Large-Scale Pavement Roughness Measurements With Vehicle Crowdsourced Data Using Semi-Supervised Learning
,”
Transp. Res. Part C Emerg. Technol.
,
125
, p.
103048
.
3.
Xu
,
B.
,
Lee
,
J.
,
Kwon
,
D.
,
Kong
,
L.
, and
Pecht
,
M.
,
2021
, “
Mitigation Strategies for Li-Ion Battery Thermal Runaway: A Review
,”
Renew. Sustain. Energy Rev.
,
150
, p.
111437
.
4.
Wang
,
R.
,
Liang
,
Z.
,
Souri
,
M.
,
Esfahani
,
M. N.
, and
Jabbari
,
M.
,
2022
, “
Numerical Analysis of Lithium-Ion Battery Thermal Management System Using Phase Change Material Assisted by Liquid Cooling Method
,”
Int. J. Heat Mass Transf.
,
183
, p.
122095
.
5.
Feng
,
Y.
,
Hourdos
,
J.
, and
Davis
,
G. A.
,
2014
, “
Probe Vehicle Based Real-Time Traffic Monitoring on Urban Roadways
,”
Transp. Res. Part C Emerg. Technol.
,
40
, pp.
160
178
.
6.
García
,
A.
,
Monsalve-Serrano
,
J.
,
Sari
,
R. L.
, and
Martínez-Boggio
,
S.
,
2022
, “
Thermal Runaway Evaluation and Thermal Performance Enhancement of a Lithium-Ion Battery Coupling Cooling System and Battery Sub-Models
,”
Appl. Therm. Eng.
,
202
, p.
117884
.
7.
Zhao
,
G.
,
Wang
,
X.
,
Negnevitsky
,
M.
, and
Zhang
,
H.
,
2021
, “
A Review of Air-Cooling Battery Thermal Management Systems for Electric and Hybrid Electric Vehicles
,”
J. Power Sources
,
501
, p.
230001
.
8.
Zhao
,
D.
,
Lei
,
Z.
, and
An
,
C.
,
2023
, “
Research on Battery Thermal Management System Based on Liquid Cooling Plate with Honeycomb-Like Flow Channel
,”
Appl. Therm. Eng.
,
218
, p.
119324
.
9.
Liao
,
G.
,
Jiang
,
K.
,
Zhang
,
F.
,
J
,
E.
,
Liu
,
L.
,
Chen
,
J.
, and
Leng
,
E.
,
2021
, “
Thermal Performance of Battery Thermal Management System Coupled With Phase Change Material and Thermoelectric Elements
,”
J. Energy Storage
,
43
, p.
103217
.
10.
Akinlabi
,
A. A. H.
, and
Solyali
,
D.
,
2020
, “
Configuration, Design, and Optimization of Air-Cooled Battery Thermal Management System for Electric Vehicles: A Review
,”
Renew. Sustain. Energy Rev.
,
125
, p.
109815
.
11.
Sarchami
,
A.
,
Najafi
,
M.
,
Imam
,
A.
, and
Houshfar
,
E.
,
2022
, “
Experimental Study of Thermal Management System for Cylindrical Li-Ion Battery Pack Based on Nanofluid Cooling and Copper Sheath
,”
Int. J. Therm. Sci.
,
171
, p.
107244
.
12.
Yang
,
W.
,
Wang
,
Y.
,
Guo
,
F.
,
Bai
,
Y.
, and
Liu
,
X.
,
2022
, “
Optimization Study of Air-Cooled Stagger-Arranged Battery Pack With Reverse-Layered Airflow
,”
J. Energy Storage
,
55
, p.
105524
.
13.
Zhang
,
X.
,
Li
,
Z.
,
Luo
,
L.
,
Fan
,
Y.
, and
Du
,
Z.
,
2022
, “
A Review on Thermal Management of Lithium-Ion Batteries for Electric Vehicles
,”
Energy
,
238
, p.
121652
.
14.
Zhao
,
G.
,
Wang
,
X.
,
Negnevitsky
,
M.
, and
Li
,
C.
,
2023
, “
An Up-to-Date Review on the Design Improvement and Optimization of the Liquid-Cooling Battery Thermal Management System for Electric Vehicles
,”
Appl. Therm. Eng.
,
219
, p.
119626
.
15.
Li
,
Y.
,
Zhou
,
Z.
,
Hu
,
L.
,
Li
,
Y.
, and
Song
,
Y.
,
2022
, “
Experimental Studies of Liquid Immersion Cooling for 18650 Lithium-Ion Battery Under Different Discharging Conditions
,”
Case Stud. Therm. Eng.
,
34
, p.
102034
.
16.
Pan
,
C.
,
Chen
,
Z.
,
Tang
,
Q.
,
He
,
Z.
,
Wang
,
L.
,
Li
,
H.
, and
Zhou
,
W.
,
2022
, “
Heat Dissipation Improvement of Lithium Battery Pack With Liquid Cooling System Based on Response-Surface Optimization
,”
J. Energy Eng.
,
148
(
4
), p.
04022022
.
17.
Wang
,
Y.
,
Dan
,
D.
,
Tran
,
M.-K.
, and
Xie
,
Y.
,
2022
, “
A Novel Heat Dissipation Structure Based on Flat Heat Pipe for Battery Thermal Management System
,”
Int. J. Energy Res.
,
46
(
11
), pp.
15961
15980
.
18.
Xie
,
Y.
,
Li
,
H.
,
Li
,
W.
,
Chen
,
B.
, and
Deng
,
S.
,
2022
, “
Improving Thermal Performance of Battery at High Current Rate by Using Embedded Heat Pipe System
,”
J. Energy Storage
,
46
, p.
103809
.
19.
He
,
L.
,
Tang
,
X.
,
Luo
,
Q.
,
Gan
,
Y.
, and
Li
,
Y.
,
2022
, “
Structure Optimization of a Heat Pipe-Cooling Battery Thermal Management System Based on Fuzzy Grey Relational Analysis
,”
Int. J. Heat Mass Transf.
,
182
, p.
121924
.
20.
Abdelkareem
,
M. A.
,
Maghrabie
,
H. M.
, and
Olabi
,
A. G.
,
2022
, “
Thermal Management Systems Based on Heat Pipes for Batteries in EVs/HEVs
,”
J. Energy Storage
,
51
, p.
104384
.
21.
Zhao
,
Y.
,
Zou
,
B.
,
Zhang
,
T.
,
Jiang
,
Z.
,
Ding
,
J.
, and
Ding
,
Y.
,
2022
, “
A Comprehensive Review of Composite Phase Change Material Based Thermal Management System for Lithium-Ion Batteries
,”
Renew. Sustain. Energy Rev.
,
167
, p.
112667
.
22.
Luo
,
J.
,
Zou
,
D.
,
Wang
,
Y.
,
Wang
,
S.
, and
Huang
,
L.
,
2022
, “
Battery Thermal Management Systems (BTMs) Based on Phase Change Material (PCM): A Comprehensive Review
,”
Chem. Eng. J.
,
430
, p.
132741
.
23.
Almehmadi
,
F. A.
,
Alqaed
,
S.
,
Mustafa
,
J.
,
Jamil
,
B.
,
Sharifpur
,
M.
, and
Cheraghian
,
G.
,
2022
, “
Combining an Active Method and a Passive Method in Cooling Lithium-Ion Batteries and Using the Generated Heat in Heating a Residential Unit
,”
J. Energy Storage
,
49
, p.
104181
.
24.
Li
,
J.
,
Tang
,
A.
,
Shao
,
X.
,
Jin
,
Y.
,
Chen
,
W.
, and
Xia
,
D.
,
2022
, “
Experimental Evaluation of Heat Conduction Enhancement and Lithium-Ion Battery Cooling Performance Based on h-BN-Based Composite Phase Change Materials
,”
Int. J. Heat Mass Transf.
,
186
, p.
122487
.
25.
Hekmat
,
S.
,
Bamdezh
,
M. A.
, and
Molaeimanesh
,
G. R.
,
2022
, “
Hybrid Thermal Management for Achieving Extremely Uniform Temperature Distribution in a Lithium Battery Module With Phase Change Material and Liquid Cooling Channels
,”
J. Energy Storage
,
50
, p.
104272
.
26.
Xin
,
Q.
,
Xiao
,
J.
,
Yang
,
T.
,
Zhang
,
H.
, and
Long
,
X.
,
2022
, “
Thermal Management of Lithium-Ion Batteries Under High Ambient Temperature and Rapid Discharging Using Composite PCM and Liquid Cooling
,”
Appl. Therm. Eng.
,
210
, p.
118230
.
27.
Wang
,
Y.
,
Gao
,
Q.
,
Wang
,
G.
,
Lu
,
P.
,
Zhao
,
M.
, and
Bao
,
W.
,
2018
, “
A Review on Research Status and Key Technologies of Battery Thermal Management and Its Enhanced Safety
,”
Int. J. Energy Res.
,
42
(
13
), pp.
4008
4033
.
28.
Kumar
,
R.
,
Mitra
,
A.
, and
Srinivas
,
T.
,
2022
, “
Role of Nano-Additives in the Thermal Management of Lithium-Ion Batteries: A Review
,”
J. Energy Storage
,
48
, p.
104059
.
29.
Wang
,
H.
,
Tao
,
T.
,
Xu
,
J.
,
Shi
,
H.
,
Mei
,
X.
, and
Gou
,
P.
,
2022
, “
Thermal Performance of a Liquid-Immersed Battery Thermal Management System for Lithium-Ion Pouch Batteries
,”
J. Energy Storage
,
46
, p.
103835
.
30.
Jaffal
,
H. M.
,
Mahmoud
,
N. S.
,
Imran
,
A. A.
, and
Hasan
,
A.
,
2023
, “
Performance Enhancement of a Novel Serpentine Channel Cooled Plate Used for Cooling of Li-Ion Battery Module
,”
Int. J. Therm. Sci.
,
184
, p.
107955
.
31.
Ding
,
Y.
,
Ji
,
H.
,
Wei
,
M.
, and
Liu
,
R.
,
2022
, “
Effect of Liquid Cooling System Structure on Lithium-Ion Battery Pack Temperature Fields
,”
Int. J. Heat Mass Transf.
,
183
, p.
122178
.
32.
Xu
,
J.
,
Chen
,
Z.
,
Qin
,
J.
, and
Minqiang
,
P.
,
2022
, “
A Lightweight and Low-Cost Liquid-Cooled Thermal Management Solution for High Energy Density Prismatic Lithium-Ion Battery Packs
,”
Appl. Therm. Eng.
,
203
, p.
117871
.
33.
He
,
P.
,
Lu
,
H.
,
Fan
,
Y.
,
Ruan
,
H.
,
Wang
,
C.
, and
Zhu
,
Y.
,
2023
, “
Numerical Investigation on a Lithium-Ion Battery Thermal Management System Utilizing a Double-Layered I-Shaped Channel Liquid Cooling Plate Exchanger
,”
Int. J. Therm. Sci.
,
187
, p.
108200
.
34.
Xie
,
J.
,
Wang
,
Y.
,
He
,
S.
,
Zhang
,
G.
,
Liu
,
X.
, and
Yang
,
X.
,
2022
, “
A Simple Cooling Structure With Precisely-Tailored Liquid Cooling Plate for Thermal Management of Large Battery Module
,”
Appl. Therm. Eng.
,
212
, p.
118575
.
35.
Wang
,
H.
,
Tao
,
T.
,
Xu
,
J.
,
Mei
,
X.
,
Liu
,
X.
, and
Gou
,
P.
,
2020
, “
Cooling Capacity of a Novel Modular Liquid-Cooled Battery Thermal Management System for Cylindrical Lithium Ion Batteries
,”
Appl. Therm. Eng.
,
178
, p.
115591
.
36.
Liu
,
Z.
,
Liu
,
X.
,
Meng
,
H.
,
Guo
,
L.
, and
Zhang
,
Z.
,
2021
, “
Numerical Analysis of the Thermal Performance of a Liquid Cooling Battery Module Based on the Gradient Ratio Flow Velocity and Gradient Increment Tube Diameter
,”
Int. J. Heat Mass Transf.
,
175
, p.
121338
.
37.
Liu
,
Z.
,
Huang
,
J.
,
Cao
,
M.
,
Jiang
,
G.
,
Yan
,
Q.
, and
Hu
,
J.
,
2021
, “
Experimental Study on the Thermal Management of Batteries Based on the Coupling of Composite Phase Change Materials and Liquid Cooling
,”
Appl. Therm. Eng.
,
185
, p.
116415
.
38.
Wu
,
W.
,
Wang
,
S.
,
Wu
,
W.
,
Chen
,
K.
,
Hong
,
S.
, and
Lai
,
Y.
,
2019
, “
A Critical Review of Battery Thermal Performance and Liquid Based Battery Thermal Management
,”
Energy Convers. Manag.
,
182
, pp.
262
281
.
39.
Tang
,
Z.
,
Wang
,
S.
,
Liu
,
Z.
, and
Cheng
,
J.
,
2020
, “
Numerical Analysis of Temperature Uniformity of a Liquid Cooling Battery Module Composed of Heat-Conducting Blocks With Gradient Contact Surface Angles
,”
Appl. Therm. Eng.
,
178
, p.
115509
.
40.
Gao
,
R.
,
Fan
,
Z.
, and
Liu
,
S.
,
2022
, “
A Gradient Channel-Based Novel Design of Liquid-Cooled Battery Thermal Management System for Thermal Uniformity Improvement
,”
J. Energy Storage
,
48
, p.
104014
.
41.
Fan
,
Z.
,
Gao
,
R.
, and
Liu
,
S.
,
2022
, “
A Novel Battery Thermal Management System Based on P Type Triply Periodic Minimal Surface
,”
Int. J. Heat Mass Transf.
,
194
, p.
123090
.
42.
Chen
,
Z.
,
Li
,
C.
, and
Pan
,
M.
,
2023
, “
A Structural Difference Design for Thermal Management to Improve the Temperature Uniformity of High Energy Density Lithium-Ion Batteries
,”
Appl. Therm. Eng.
,
221
, p.
119829
.
43.
Lai
,
Y.
,
Wu
,
W.
,
Chen
,
K.
,
Wang
,
S.
, and
Xin
,
C.
,
2019
, “
A Compact and Lightweight Liquid-Cooled Thermal Management Solution for Cylindrical Lithium-Ion Power Battery Pack
,”
Int. J. Heat Mass Transf.
,
144
, p.
118581
.
44.
Bernardi
,
D.
,
Pawlikowski
,
E.
, and
Newman
,
J.
,
1985
, “
A General Energy Balance for Battery Systems
,”
J. Electrochem. Soc.
,
132
(
1
), p.
5
.
45.
Kong
,
D.
,
Peng
,
R.
,
Ping
,
P.
,
Du
,
J.
,
Chen
,
G.
, and
Wen
,
J.
,
2020
, “
A Novel Battery Thermal Management System Coupling With PCM and Optimized Controllable Liquid Cooling for Different Ambient Temperatures
,”
Energy Convers. Manag.
,
204
, p.
112280
.
46.
Jeon
,
D. H.
, and
Baek
,
S. M.
,
2011
, “
Thermal Modeling of Cylindrical Lithium Ion Battery During Discharge Cycle
,”
Energy Convers. Manag.
,
52
(
8
), pp.
2973
2981
.
You do not currently have access to this content.