Abstract

The construction of advanced Fe2O3 materials with high energy density for energy storage faces challenges due to the defects of conventional widely known red-brown Fe2O3 such as poor electronic conductivity and insufficient physical/chemical stability. Unlike previous works, we successfully synthesized a novel black-Fe2O3 (B-Fe2O3) thin film electrode by adopting a simple hydrothermal strategy. Physical characterizations indicate that the as-made B-Fe2O3 product is composed of polyhedrons (mainly exhibit four to eight sides) with a micrometer grade size range. Besides, the Fe-based thin film electrode with this 3D structure has a stronger affinity and high electronic conductivity. As anode of aqueous solid-state energy storage devices, the as-synthesized B-Fe2O3 film electrode exhibits excellent volume energy density of 14.349 kWh m−3 at a power density of 1609 kW m−3, which is much higher than the best result of previous works (∼8 kWh m−3). This study may provide new insights into the development of the Fe2O3 series on developing high-efficiency Fe-based anode materials for solid-state energy storage.

References

1.
Xu
,
R.
,
Du
,
L.
,
Adekoya
,
D.
,
Zhang
,
G.
,
Zhang
,
S.
,
Sun
,
S.
, and
Lei
,
Y.
,
2021
, “
Well-Defined Nanostructures for Electrochemical Energy Conversion and Storage
,”
Adv. Energy Mater.
,
11
(
15
), p.
2001537
.
2.
Ju
,
J.
,
Ma
,
J.
,
Wang
,
Y.
,
Cui
,
Y.
,
Han
,
P.
, and
Cui
,
G.
,
2019
, “
Solid-State Energy Storage Devices Based on Two-Dimensional Nano-Materials
,”
Energy Storage Mater.
,
20
, pp.
269
290
.
3.
Dong
,
Y.
,
Xing
,
L.
,
Hu
,
F.
,
Umar
,
A.
, and
Wu
,
X.
,
2018
, “
α-Fe2O3/rGO Nanospindles as Electrode Materials for Supercapacitors With Long Cycle Life
,”
Mater. Res. Bull.
,
107
, pp.
391
396
.
4.
Khatavkar
,
S. N.
, and
Sartale
,
S. D.
,
2019
, “
α-Fe2O3 Thin Film on Stainless Steel Mesh: A Flexible Electrode for Supercapacitor
,”
Mater. Chem. Phys.
,
225
, pp.
284
291
.
5.
Liu
,
L.
,
Lang
,
J.
,
Zhang
,
P.
,
Hu
,
B.
, and
Yan
,
X.
,
2016
, “
Facile Synthesis of Fe2O3 Nano-Dots@Nitrogen-Doped Graphene for Supercapacitor Electrode With Ultralong Cycle Life in KOH Electrolyte
,”
ACS Appl. Mater. Interfaces
,
8
(
14
), pp.
9335
9344
.
6.
Sun
,
Z.
,
Li
,
F.
,
Ma
,
Z.
,
Wang
,
Q.
, and
Qu
,
F.
,
2021
, “
Battery-Type Phosphorus Doped FeS2 Grown on Graphene as Anode for Hybrid Supercapacitor With Enhanced Specific Capacity
,”
J. Alloys Compd.
,
854
, p.
157114
.
7.
Wan
,
F.
,
Zhu
,
J.
,
Huang
,
S.
, and
Niu
,
Z.
,
2020
, “
High-Voltage Electrolytes for Aqueous Energy Storage Devices
,”
Batteries Supercaps
,
3
(
4
), pp.
323
330
.
8.
Fan
,
Y.
,
Wang
,
L.
,
Huang
,
W.
,
Dong
,
Y.
,
Ma
,
Z.
,
Guo
,
W.
, and
Mai
,
L.
,
2019
, “
Co(OH)2@Co Electrode for Efficient Alkaline Anode Based on Co2+/Co Degrees Redox Mechanism
,”
Energy Storage Mater.
,
21
, pp.
372
377
.
9.
Cheng
,
F.
,
Liang
,
J.
,
Tao
,
Z.
, and
Chen
,
J.
,
2011
, “
Functional Materials for Rechargeable Batteries
,”
Adv. Mater.
,
23
(
15
), pp.
1695
1715
.
10.
Cano
,
Z. P.
,
Banham
,
D.
,
Ye
,
S.
,
Hintennach
,
A.
,
Lu
,
J.
,
Fowler
,
M.
, and
Chen
,
Z.
,
2018
, “
Batteries and Fuel Cells for Emerging Electric Vehicle Markets
,”
Nat. Energy
,
3
(
4
), pp.
279
289
.
11.
Liu
,
J.
,
Zhang
,
J.-G.
,
Yang
,
Z.
,
Lemmon
,
J. P.
,
Imhoff
,
C.
,
Graff
,
G. L.
,
Li
,
L.
, et al
,
2013
, “
Materials Science and Materials Chemistry for Large Scale Electrochemical Energy Storage: From Transportation to Electrical Grid
,”
Adv. Funct. Mater.
,
23
(
8
), pp.
929
946
.
12.
Qu
,
W.
,
Yan
,
M.
,
Luo
,
R.
,
Qian
,
J.
,
Wen
,
Z.
,
Chen
,
N.
,
Li
,
L.
,
Wu
,
F.
, and
Chen
,
R.
,
2021
, “
A Novel Nanocomposite Electrolyte With Ultrastable Interface Boosts Long Life Solid-State Lithium Metal Batteries
,”
J. Power Sources
,
484
, p.
229195
.
13.
Guan
,
C.
,
Zhao
,
W.
,
Hu
,
Y.
,
Ke
,
Q.
,
Li
,
X.
,
Zhang
,
H.
, and
Wang
,
J.
,
2016
, “
High-Performance Flexible Solid-State Ni/Fe Battery Consisting of Metal Oxides Coated Carbon Cloth/Carbon Nanofiber Electrodes
,”
Adv. Energy Mater.
,
6
(
20
), p.
1601034
.
14.
Jiang
,
T.
,
Bu
,
F.
,
Feng
,
X.
,
Shakir
,
I.
,
Hao
,
G.
, and
Xu
,
Y.
,
2017
, “
Porous Fe2O3 Nanoframeworks Encapsulated Within Three-Dimensional Graphene as High-Performance Flexible Anode for Lithium-Ion Battery
,”
ACS Nano
,
11
(
5
), pp.
5140
5147
.
15.
Kong
,
D.
,
Wang
,
Y.
,
Huang
,
S.
,
Zhang
,
B.
,
Lim
,
Y.-V.
,
Sim
,
G.-J.
,
Alvarado
,
V. y.
,
Ge
,
P.
,
Yang
,
Q.
, and
Y
,
H.
,
2020
, “
3D Printed Compressible Quasi-Solid-State Nickel-Iron Battery
,”
ACS Nano
,
14
(
8
), pp.
9675
9686
.
16.
Baggetto
,
L.
,
Niessen
,
R.-A.-H.
,
Roozeboom
,
F.
, and
Notten
,
P.-H.-L.
,
2008
, “
High Energy Density All-Solid-State Batteries: A Challenging Concept Towards 3D Integration
,”
Adv. Funct. Mater.
,
18
(
7
), pp.
1057
1066
.
17.
Choi
,
S.
,
Jeon
,
M.
,
Ahn
,
J.
,
Jung
,
W. D.
,
Choi
,
S. M.
,
Kim
,
J.-S.
,
Lim
,
J.
, et al
,
2018
, “
Quantitative Analysis of Microstructures and Reaction Interfaces on Composite Cathodes in All-Solid-State Batteries Using a Three-Dimensional Reconstruction Technique
,”
ACS Appl. Mater. Interfaces
,
10
(
28
), pp.
23740
23747
.
18.
Li
,
X.
,
Yuan
,
L.
,
Liu
,
R.
,
He
,
H.
,
Hao
,
J.
,
Lu
,
Y.
,
Wang
,
Y.
,
Liang
,
G.
,
Yuan
,
G.
, and
Guo
,
Z.
,
2021
, “
Engineering Textile Electrode and Bacterial Cellulose Nanofiber Reinforced Hydrogel Electrolyte to Enable High-Performance Flexible All-Solid-State Supercapacitors
,”
Adv. Energy Mater.
,
11
(
12
), p.
2003010
.
19.
Fan
,
L.
,
Wei
,
S.
,
Li
,
S.
,
Li
,
Q.
, and
Lu
,
Y.
,
2018
, “
Recent Progress of the Solid-State Electrolytes for High-Energy Metal-Based Batteries
,”
Adv. Energy Mater.
,
8
(
11
), p.
1702657
.
20.
Chen
,
J.
,
Xu
,
J.
,
Zhou
,
S.
,
Zhao
,
N.
, and
Wong
,
C.-P.
,
2015
, “
Template-Grown Graphene/Porous Fe2O3 Nanocomposite: A High-Performance Anode Material for Pseudocapacitors
,”
Nano Energy
,
15
, pp.
719
728
.
21.
Jia
,
H.
,
Liang
,
H.
,
Wang
,
Z.
,
Li
,
C.
,
Zheng
,
X.
,
Cai
,
Y.
,
Qi
,
J.
,
Cao
,
J.
,
Feng
,
J.
, and
Fei
,
W.
,
2019
, “
“One-for-All” Strategy to Design Oxygen-Deficient Triple-Shelled MnO2 and Hollow Fe2O3 Microcubes for High Energy Density Asymmetric Supercapacitors
,”
Dalton Trans.
,
48
(
24
), pp.
8623
8632
.
22.
Zeng
,
Y.
,
Yu
,
M.
,
Meng
,
Y.
,
Fang
,
P.
,
Lu
,
X.
, and
Tong
,
Y.
,
2016
, “
Iron-Based Supercapacitor Electrodes: Advances and Challenges
,”
Adv. Energy Mater.
,
6
(
24
), p.
1601053
.
23.
Li
,
Y.
,
Xu
,
J.
,
Feng
,
T.
,
Yao
,
Q.
,
Xie
,
J.
, and
Xia
,
H.
,
2017
, “
Fe2O3 Nanoneedles on Ultrafine Nickel Nanotube Arrays as Efficient Anode for High-Performance Asymmetric Supercapacitors
,”
Adv. Funct. Mater.
,
27
(
14
), p.
1606728
.
24.
Tang
,
X.
,
Jia
,
R.
,
Zhai
,
T.
, and
Xia
,
H.
,
2015
, “
Hierarchical Fe3O4@Fe2O3 Core-Shell Nanorod Arrays as High-Performance Anodes for Asymmetric Supercapacitors
,”
ACS Appl. Mater. Interfaces
,
7
(
49
), pp.
27518
27525
.
25.
Zeng
,
Y.
,
Han
,
Y.
,
Zhao
,
Y.
,
Zeng
,
Y.
,
Yu
,
M.
,
Liu
,
Y.
,
Tang
,
H.
,
Tong
,
Y.
, and
Lu
,
X.
,
2015
, “
Advanced Ti-Doped Fe2O3@PEDOT Core/Shell Anode for High-Energy Asymmetric Supercapacitors
,”
Adv. Energy Mater.
,
5
(
12
), p.
1402176
.
26.
Dai
,
S.
,
Bai
,
Y.
,
Shen
,
W.
,
Zhang
,
S.
,
Hu
,
H.
,
Fu
,
J.
,
Wang
,
X.
,
Hu
,
C.
, and
Liu
,
M.
,
2021
, “
Core-Shell Structured Fe2O3@Fe3C@C Nanochains and Ni-Co Carbonate Hydroxide Hybridized Microspheres for High-Performance Battery-Type Supercapacitor
,”
J. Power Sources
,
482
, p.
228915
.
27.
Lin
,
J.
,
Yan
,
Y.
,
Wang
,
H.
,
Zheng
,
X.
,
Jiang
,
Z.
,
Wang
,
Y.
,
Qi
,
J.
,
Cao
,
J.
,
Fei
,
W.
, and
Feng
,
J.
,
2019
, “
Hierarchical Fe2O3 and NiO Nanotube Arrays as Advanced Anode and Cathode Electrodes for High-Performance Asymmetric Supercapacitors
,”
J. Alloys Compd.
,
794
, pp.
255
260
.
28.
Su
,
S.
,
Shi
,
L.
,
Wentao
,
Y.
,
Wang
,
Y.
,
Zou
,
P.
,
Liu
,
K.
,
Wang
,
M.
,
Kang
,
F.
, and
Yang
,
C.
,
2020
, “
Interface Metallization Enabled an Ultra-Stable Fe2O3 Hierarchical Anode for Pseudocapacitors
,”
RSC Adv.
,
10
(
15
), pp.
8636
8644
.
29.
Guan
,
C.
,
Liu
,
J.
,
Wang
,
Y.
,
Mao
,
L.
,
Fan
,
Z.
,
Shen
,
Z.
,
Zhang
,
H.
, and
Wang
,
J.
,
2015
, “
Iron Oxide-Decorated Carbon for Supercapacitor Anodes With Ultrahigh Energy Density and Outstanding Cycling Stability
,”
ACS Nano
,
9
(
5
), pp.
5198
5207
.
30.
Jacob Otabil
,
B.
, and
Jeong In
,
H.
,
2020
, “
Sucrose-Templated Interconnected Meso/Macroporous 2D Symmetric Graphitic Carbon Networks as Supports for α-Fe2O3 Towards Improved Supercapacitive Behavior
,”
RSC Adv.
,
10
(
27
), pp.
15751
15762
.
31.
Fan
,
Y.
,
Ma
,
Z.
,
Wang
,
L.
,
Dong
,
Y.
,
Jiang
,
T.
,
Li
,
Z.
,
Liu
,
L.
, and
Shao
,
G.
,
2018
, “
In-Situ Synthesis of NiO Foamed Sheets on Ni Foam as Efficient Cathode of Battery-Type Supercapacitor
,”
Electrochim. Acta
,
269
, pp.
62
69
.
32.
Zou
,
Z.
,
Xiao
,
W.
,
Zhang
,
Y.
,
Yu
,
H.
, and
Zhou
,
W.
,
2020
, “
Facile Synthesis of Freestanding Cellulose/RGO/Silver/Fe2O3 Hybrid Film for Ultrahigh-Areal-Energy-Density Flexible Solid-State Supercapacitor
,”
Appl. Surf. Sci.
,
500
, p.
144244
.
33.
Zhao
,
C.
,
Shao
,
X.
,
Zhu
,
Z.
,
Zhao
,
C.
, and
Qian
,
X.
,
2017
, “
One-Pot Hydrothermal Synthesis of RGO/FeS Composite on Fe Foil for High Performance Supercapacitors
,”
Electrochim. Acta
,
246
, pp.
497
506
.
34.
Fan
,
Y.
,
Wang
,
L.
,
Ma
,
Z.
,
Dai
,
W.
,
Shao
,
H.
,
Wang
,
H.
, and
Shao
,
G.
,
2018
, “
The In Situ Synthesis of Fe(OH)3 Film on Fe Foam as Efficient Anode of Alkaline Supercapacitor Based on a Promising Fe3+/Fe0 Energy Storage Mechanism
,”
Part. Part. Syst. Charact.
,
35
(
6
), p.
1700484
.
35.
Dong
,
T.
,
Deng
,
T.
,
Chu
,
X.
,
Qin
,
T.
,
Wang
,
H.
,
Wang
,
Z.
,
Zhang
,
W.
, and
Zheng
,
W.
,
2020
, “
Carbon Intermediate Boosted Fe-ZIF Derived Alpha-Fe2O3 as a High-Performance Negative Electrode for Supercapacitors
,”
Nanotechnology
,
31
(
13
), p.
135403
.
36.
Yao
,
J.
,
Liu
,
Y.
,
Zhang
,
H.
,
Ma
,
L.
,
Meng
,
T.
,
Li
,
N.
,
Jiang
,
J.
,
Zhu
,
J.
, and
Li
,
C. M.
,
2019
, “
Configuring Optimal FeS2@Carbon Nanoreactor Anodes: Toward Insights Into Pyrite Phase Change/Failure Mechanism in Rechargeable Ni-Fe Cells
,”
ACS Appl. Mater. Interfaces
,
11
(
45
), pp.
42032
42041
.
37.
Liu
,
J.
,
Chen
,
M.
,
Zhang
,
L.
,
Jiang
,
J.
,
Yan
,
J.
,
Huang
,
Y.
,
Lin
,
J.
,
Fan
,
H. J.
, and
Shen
,
Z. X.
,
2014
, “
A Flexible Alkaline Rechargeable Ni/Fe Battery Based on Graphene Foam/Carbon Nanotubes Hybrid Film
,”
Nano Lett.
,
14
(
12
), pp.
7180
7187
.
38.
Li
,
J.
,
Wang
,
S.
,
Chen
,
X.
,
Xiao
,
T.
,
Tan
,
X.
,
Xiang
,
P.
, and
Jiang
,
L.
,
2018
, “
Enhancing Electrochemical Performance of Fe2O3 via in Situ Sulfurization and Carbon Coating Modification for Nickel-Iron Rechargeable Batteries
,”
Electrochim. Acta
,
290
, pp.
332
338
.
39.
Yang
,
B.
,
Malkhandi
,
S.
,
Manohar
,
A. K.
,
Prakash
,
G. K. S.
, and
Narayanan
,
S. R.
,
2014
, “
Organo-Sulfur Molecules Enable Iron-Based Battery Electrodes to Meet the Challenges of Large-Scale Electrical Energy Storage
,”
Energy Environ. Sci.
,
7
(
8
), pp.
2753
2763
.
40.
Shangguan
,
E.
,
Fu
,
S.
,
Wu
,
C.
,
Cai
,
X.
,
Li
,
J.
, and
Chang
,
Z.
,
2019
, “
Sublimed Sulfur Powders as Novel Effective Anode Additives to Enhance the High-Rate Capabilities of Iron Anodes for Advanced Iron-Based Secondary Batteries
,”
Electrochim. Acta
,
301
, pp.
162
173
.
41.
Manohar
,
A. K.
,
Yang
,
C.
, and
Narayanan
,
S. R.
,
2015
, “
The Role of Sulfide Additives in Achieving Long Cycle Life, Rechargeable Iron Electrodes in Alkaline Batteries
,”
J. Electrochem. Soc.
,
162
(
9
), pp.
A1864
A1872
.
42.
Manohar
,
A. K.
,
Malkhandi
,
S.
,
Yang
,
B.
,
Yang
,
C.
,
Prakash
,
G. K. S.
, and
Narayanan
,
S. R.
,
2012
, “
A High-Performance Rechargeable Iron Electrode for Large-Scale Battery-Based Energy Storage
,”
J. Electrochem. Soc.
,
159
(
8
), pp.
A1209
A1214
.
43.
Tian
,
B.
,
Światowska
,
J.
,
Maurice
,
V.
,
Zanna
,
S.
,
Seyeux
,
A.
, and
Marcus
,
P.
,
2018
, “
The Effect of Na2S Additive in Alkaline Electrolyte on Improved Performances of Fe-Based Air Batteries
,”
Electrochim. Acta
,
259
, pp.
196
203
.
You do not currently have access to this content.