Abstract

The pursuit of sustainable and clean energy solutions has led to increased interest in hydrogen as an efficient energy carrier. This paper presents a comprehensive analysis of state-of-the-art technologies for hydrogen production through seawater electrolysis and desalination, addressing the critical need for clean energy generation and sustainable water supply. It emphasizes the importance of hydrogen as a versatile and environmentally friendly energy source, as well as the significance of seawater desalination in addressing water scarcity challenges. “The analysis encompasses a comparison of the three existing commercial electrolysis technologies”: solid oxide electrolysis (SOE), alkaline electrolyzers (AE), and proton exchange membrane (PEM) electrolysis. Factors such as energy requirements, capital and maintenance costs, and offshore suitability are considered, facilitating an informed evaluation of the most suitable electrolysis method for seawater hydrogen production. Additionally, three desalination technologies with commercial applications are under evaluation: reverse osmosis (RO), thermal desalination, and membrane desalination. The assessment takes into account investment and operation costs, energy demand, and environmental impact, providing insights into the feasibility and sustainability of integrating hydrogen production with seawater desalination. The findings reveal the energy, economic, and environmental aspects of hydrogen production via seawater electrolysis and desalination, shedding light on the synergies and challenges involved. The study concludes by summarizing the main results, identifying research gaps, and outlining future directions for further advancements in the field. This condensed review serves as a valuable resource for policymakers, researchers, and practitioners in understanding the complex interplay between hydrogen production, seawater electrolysis, and desalination. It provides a perspective on energy demands, environmental impact, and investment of various technologies, enabling informed decision-making toward a more sustainable and resilient energy–water nexus. Overall, this study contributes to the growing body of knowledge on hydrogen production and seawater desalination, offering insights that can inform strategic planning, policy development, and technological advancements in achieving a greener and more sustainable future.

References

1.
United Nations
. “The Sustainable Development Goals Report 2023: Special Edition,” https://unstats.un.org/sdgs/report/2023/
2.
United Nations Framework Convention on Climate Change
.
2015
, “Paris Agreement,” https://unfccc.int/resource/docs/2015/cop21/eng/l09r01.pdf, Accessed July 6, 2023.
3.
Science Learning Hub
. “Hydrogen—The Number 1 Element,” https://www.sciencelearn.org.nz/resources/1729-hydrogen-the-number-1-element, Accessed October 28, 2009.
4.
National Grid
. “Greenhouse Gas Reduction Benefits and Costs of a Large-Scale Transition to Hydrogen in the USA,” https://www.nationalgrid.com/stories/energy-explained/what-is-hydrogen, Accessed July 6, 2023.
5.
Columbia Climate School
.
2021
, “The Need for Green Hydrogen,” Columbia Climate School News, https://news.climate.columbia.edu/2021/01/07/need-green-hydrogen/,
Accessed January 7 2021
.
6.
Iberdrola
. “Green Hydrogen: The Fuel of the Future,” https://www.iberdrola.com/sustainability/green-hydrogen, Accessed July 6, 2023.
7.
Agyekum
,
E. B.
,
Nutakor
,
C.
,
Agwa
,
A. M.
, and
Kamel
,
S.
,
2022
, “
A Critical Review of Renewable Hydrogen Production Methods: Factors Affecting Their Scale-Up and Its Role in Future Energy Generation
,”
Membranes (Basel)
,
12
(
2
), p.
173
.
8.
Kalinci
,
Y.
,
Hepbasli
,
A.
, and
Dincer
,
I.
,
2009
, “
Biomass-Based Hydrogen Production: A Review and Analysis
,”
Int. J. Hydrogen Energy
,
34
(
21
), pp.
8799
8817
.
9.
Boretti
,
A.
,
2020
, “
Production of Hydrogen for Export From Wind and Solar Energy, Natural Gas, and Coal in Australia
,”
Int. J. Hydrogen Energy
,
45
(
7
), pp.
3899
3904
.
10.
Takach
,
M.
,
Sarajlić
,
M.
,
Peters
,
D.
,
Kroener
,
F.
,
Schuldt
,
K.
, and
von Maydell
,
K.
,
2022
, “
Review of Hydrogen Production Techniques From Water Using Renewable Energy Sources and Its Storage in Salt Caverns
,”
Energies
,
15
(
4
), p.
1415
.
11.
Abe
,
J.O.
,
Popoola
,
A. P.I.
,
Ajenifuja
,
E.
, and
Popoola
,
O.M.
,
2019
, “
Hydrogen Energy, Economy and Storage: Review and Recommendation
,”
Int. J. Hydrogen Energy
,
44
(
29
), pp.
15072
15086
.
12.
Weaver
,
P. F.
,
Lien
,
S.
, and
Seibert
,
M.
,
1980
, “
Photobiological Production of Hydrogen
,”
Sol. Energy
,
24
(
1
), pp.
3
45
.
13.
Melaina
,
M. W.
, and
Eichman
,
J.
2015
, “Hydrogen Energy Storage: Grid and Transportation Services,” NREL, Report No. NREL/TP-5400-62518.
14.
Moriarty
,
P.
, and
Honnery
,
D.
,
2019
, “
Prospects for Hydrogen as a Transport Fuel
,”
Int. J. Hydrogen Energy
,
44
(
31
), pp.
16029
16037
.
15.
Pingkuo
,
L.
, and
Xue
,
H.
,
2022
, “
Comparative Analysis on Similarities and Differences of Hydrogen Energy Development in the World's Top 4 Largest Economies: A Novel Framework
,”
Int. J. Hydrogen Energy
,
47
(
16
), pp.
9485
9503
.
16.
Strachan
,
N.
,
Kannan
,
R.
, and
Pye
,
S.
,
2008
, “Scenarios and Sensitivities on Long-Term UK Carbon Reductions Using the UK MARKAL and MARKAL-Macro Energy System Models,” UK Energy Research Centre, Research Report No. REF UKERC/RR/ESM/2008/002. https://ukerc.rl.ac.uk/UCAT/PUBLICATIONS/Scenarios_and_Sensitivities_on_Long-term_UK_Carbon_Reductions_using_the_UK_MARKAL_and_MARKAL-MACRO_Energy_System_Models.pdf.
17.
Fredershausen
,
S.
,
Lechte
,
H.
,
Willnat
,
M.
,
Witt
,
T.
,
Harnischmacher
,
C.
,
Lembcke
,
T.-B.
,
Klumpp
,
M.
, and
Kolbe
,
L.
,
2021
, “
Towards an Understanding of Hydrogen Supply Chains: A Structured Literature Review Regarding Sustainability Evaluation
,”
Sustainability
,
13
(
21
), p.
11652
.
18.
Wang
,
S.
,
Lu
,
A.
, and
Zhong
,
C. J.
,
2021
, “
Hydrogen Production From Water Electrolysis: Role of Catalysts
,”
Nano Convergence
,
8
(
4
), pp.
1
23
.
19.
Das
,
A.
, and
Peu
,
S. D.
,
2022
, “
A Comprehensive Review on Recent Advancements in Thermochemical Processes for Clean Hydrogen Production to Decarbonize the Energy Sector
,”
Sustainability
,
14
(
18
), p.
11206
.
20.
Zhang
,
L.
,
Wang
,
Z.
, and
Qiu
,
J.
,
2022
, “
Energy-Saving Hydrogen Production by Seawater Electrolysis Coupling Sulfion Degradation
,”
Adv. Mater.
,
34
(
16
), p.
e2109321
.
21.
Kuang
,
Y.
,
Kenney
,
M. J.
,
Meng
,
Y.
,
Hung
,
W.-H.
,
Liu
,
Y.
,
Huang
,
J. E.
,
Prasanna
,
R.
, et al
2019
, “
Solar-Driven, Highly Sustained Splitting of Seawater Into Hydrogen and Oxygen Fuels
,”
Proc. Natl. Acad. Sci. U. S. A.
,
116
(
14
), pp.
6624
6629
.
22.
Gude
,
V. G.
, and
Fthenakis
,
V.
,
2020
, “
Energy Efficiency and Renewable Energy Utilization in Desalination Systems
,”
Prog. Energy
,
2
(
2
), p.
022003
.
23.
Feria-Díaz
,
J. J.
,
López-Méndez
,
M. C.
,
Rodríguez-Miranda
,
J. P.
,
Sandoval-Herazo
,
L. C.
and
Correa-Mahecha
,
F.
,
2021
, “
Commercial Thermal Technologies for Desalination of Water From Renewable Energies: A State of the Art Review
,”
Processes
,
9
(
2
), p.
262
.
24.
Greco
,
F.
, and
Heijman
,
S. G. J.
,
2021
, “
Integration of Wind Energy and Desalination Systems: A Review Study
,”
Processes
,
9
(
12
), p.
2181
.
25.
Elsaid
,
K.
,
Kamil
,
M.
,
Sayed
,
E. T.
,
Abdelkareem
,
M. A.
,
Wilberforce
,
T.
, and
Olabi
,
A.
,
2020
, “
Environmental Impact of Desalination Technologies: A Review
,”
Sci. Total Environ.
,
748
, p.
141528
.
26.
Do Ti
,
H. T.
,
Pasztor
,
T.
,
Fozer
,
D.
,
Manenti
,
F.
, and
Toth
,
A. J.
, “
Comparison of Desalination Technologies Using Renewable Energy Sources With Life Cycle, PESTLE, and Multi-Criteria Decision Analyses
,”
Water
,
13
(
21
), p.
3023
.
27.
Kumar
,
S. S.
, and
Himabindu
,
V.
,
2019
, “
Hydrogen Production by PEM Water Electrolysis—A Review
,”
Mater. Sci. Energy Technol.
,
2
(
3
), pp.
442
454
.
28.
Brauns
,
J.
, and
Turek
,
T.
, “
Alkaline Water Electrolysis Powered by Renewable Energy: A Review
,”
Processes
,
8
(
2
), p.
248
.
29.
Carmo
,
M.
,
Fritz
,
D. L.
,
Mergel
,
J.
, and
Stolten
,
D.
,
2013
, “
A Comprehensive Review on PEM Water Electrolysis
,”
Int. J. Hydrogen Energy
,
38
(
12
), pp.
4901
4934
.
30.
Sinha
,
A.
“Green Hydrogen,” Ispat Guru. https://www.ispatguru.com/green-hydrogen/. Accessed May 1, 2023.
31.
d’Amore-Domenech
,
R.
, and
Leo
,
T. J.
,
2019
, “
Sustainable Hydrogen Production From Offshore Marine Renewable Farms: Techno-Energetic Insight on Seawater Electrolysis Technologies
,”
ACS Sustainable Chem. Eng.
,
7
(
9
), pp.
8006
8022
.
32.
Meier
,
K.
,
2014
, “
Hydrogen Production With Seawater Electrolysis Using Norwegian Offshore Wind Energy Potentials: Techno-Economic Assessment for an Offshore-Based Hydrogen Production Approach With State-of-the-art Technology
,”
Int. J. Hydrogen Energy
,
39
(
17
), pp.
9129
9141
.
33.
Lin
,
S.
,
Zhao
,
H.
,
Zhu
,
L.
,
He
,
T.
,
Chen
,
S.
,
Gao
,
C.
, and
Zhang
,
L.
,
2019
, “
Seawater Desalination Technology and Engineering in China: A Review
,”
Desalination
,
498
, p.
114728
.
34.
NASA
. “H2O Electrolysis With Impure Water Source—Final Report,” https://ntrs.nasa.gov/api/citations/20230003630/downloads/TM-20230003630.pdf, Accessed March, 2023.
35.
Godula-Jopek
,
A.
, ed.
2015
,
Hydrogen Production: Electrolysis
,
Wiley-VCH Verlag GmbH & Co. KGaA
.
36.
Shi
,
Y.
,
Lu
,
Z.
,
Guo
,
L.
, and
Yan
,
C.
,
2017
, “
Fabrication of Membrane Electrode Assemblies by Direct Spray Catalyst on Water Swollen Nafion Membrane for PEM Water Electrolysis
,”
Int. J. Hydrogen Energy
,
42
(
42
), pp.
26183
26191
.
37.
Siracusano
,
S.
,
Van Dijk
,
N.
,
Backhouse
,
R.
,
Merlo
,
L.
,
Baglio
,
V.
, and
Aricò
,
A. S.
,
2018
, “
Degradation Issues of PEM Electrolysis MEAs
,”
Renewable Energy
,
123
, pp.
52
57
.
38.
Gago
,
A. S.
,
Lettenmeier
,
P.
,
Stiber
,
S.
,
Ansar
,
A. S.
,
Wang
,
L.
, and
Friedrich
,
K. A.
,
2018
, “
Cost-Effective PEM Electrolysis: The Quest to Achieve Superior Efficiencies With Reduced Investment
,”
ECS Trans.
,
85
(
13
), p.
3
13
.
39.
Buttler
,
A.
, and
Spliethoff
,
H.
,
2018
, “
Current Status of Water Electrolysis for Energy Storage, Grid Balancing and Sector Coupling via Power-to-Gas and Power-to-Liquids: A Review
,”
Renewable Sustainable Energy Rev.
,
82
(
pt. 3
), pp.
2440
2454
.
40.
“Siemens Energy to Start Production of Hydrogen Electrolyzers in Berlin,” https://press.siemens-energy.com/global/en/pressrelease/siemens-energy-start-production-hydrogen-electrolyzers-berlin, Accessed March 31, 2022.
41.
Hauch
,
A.
,
Jensen
,
S. H.
,
Ebbesen
,
S. D.
, and
Mogensen
,
M.
,
2007
, “
Durability of Solid Oxide Electrolysis Cells for Hydrogen Production
,”
Proceedings of Risø International Energy Conference, Energy Solutions for Sustainable Development
,
Norway
,
May 22–24
, pp. 1–11, https://www.researchgate.net/publication/266799785_Durability_of_Solid_Oxide_Electrolysis_Cells_for_Hydrogen_Production.
42.
AlZahrania
,
A. A.
, and
Dincer
,
I.
,
2018
, “
Modeling and Performance Optimization of a Solid Oxide Electrolysis System for Hydrogen Production
,”
Appl. Energy
,
225
, pp.
471
485
.
43.
Anwar
,
S.
,
Khan
,
F.
,
Zhang
,
Y.
, and
Djire
,
A.
,
2021
, “
Recent Development in Electrocatalysts for Hydrogen Production Through Water Electrolysis
,”
Int. J. Hydrogen Energy
,
46
(
63
), pp.
32284
32317
.
44.
Kyriakarakos
,
G.
,
Papadakis
,
G.
, and
Karavitis
,
C. A.
,
2022
, “
Renewable Energy Desalination for Island Communities: Status and Future Prospects in Greece
,”
Sustainability
,
14
(
13
), p.
8176
.
45.
Schefold
,
J.
,
Brisse
,
A.
, and
Tietz
,
F.
,
2012
, “
Nine Thousand Hours of Operation of a Solid Oxide Cell in Steam Electrolysis Mode
,”
J. Electrochem. Soc.
,
159
(
2
), pp.
A137
A144
.
46.
Schefold
,
J.
,
Brisse
,
A.
, and
Poepke
,
H.
,
2015
, “
Long-Term Steam Electrolysis With Electrolyte-Supported Solid Oxide Cells
,”
Electrochim. Acta
,
179
, pp.
161
168
.
48.
Curto
,
D.
,
Franzitta
,
V.
, and
Guercio
,
A.
,
2021
, “
A Review of the Water Desalination Technologies
,”
Appl. Sci.
,
11
(
2
), p.
670
.
49.
Abdelkareem
,
M. A.
,
El Haj Assad
,
M.
,
Taha Sayed
,
E.
, and
Soudan
,
B.
,
2018
, “
Recent Progress in the Use of Renewable Energy Sources to Power Water Desalination Plants
,”
Desalination
,
435
, pp.
97
113
.
50.
Gude
,
V. G.
,
2015
, “
Energy Storage for Desalination Processes Powered by Renewable Energy and Waste Heat Sources
,”
Appl. Energy
,
137
, pp.
877
898
.
51.
Khawaji
,
A. D.
,
Kutubkhanah
,
I. K.
, and
Wie
,
J. M.
,
2008
, “
Advances in Seawater Desalination Technologies
,”
Desalination
,
221
(
1–3
), pp.
47
69
.
52.
Warsinger
,
D. M.
,
Mistry
,
K. H.
,
Nayar
,
K. G.
,
Chung
,
H. W.
, and
Lienhard V
,
J. H.
,
2015
, “
Entropy Generation of Desalination Powered by Variable Temperature Waste Heat
,”
Entropy
,
17
(
11
), pp.
7530
7566
.
53.
Ophir
,
A.
, and
Lokiec
,
F.
,
2005
, “
Advanced MED Process for Most Economical Sea Water Desalination
,”
Desalination
,
182
(
1-3
), pp.
187
198
.
54.
Panagopoulos
,
A.
,
2019
, “
Process Simulation and Techno-Economic Assessment of a Zero Liquid Discharge/Multi-Effect Desalination/Thermal Vapor Compression (ZLD/MED/TVC) System
,”
Int. J. Energy Res.
,
44
(
1
), pp.
473
495
.
55.
Elsaid
,
K.
,
Kamil
,
M.
,
Sayed
,
E. T.
,
Abdelkareem
,
M. A.
,
Wilberforce
,
T.
, and
Olabi
,
A.
,
2020
, “
Environmental Impact of Desalination Technologies: A Review
,”
Sci. Total Environ.
,
748
, p.
141528
.
56.
Warsinger
,
D. M.
,
Tow
,
E. W.
,
Nayar
,
K. G.
,
Maswadeh
,
L. A.
, and
Lienhard V
,
J. H.
,
2016
, “
Energy Efficiency of Batch and Semi-Batch (CCRO) Reverse Osmosis Desalination
,”
Water Res.
,
106
, pp.
272
282
.
57.
“What Is Reverse Osmosis Desalination?,” Active Sustainability. https://www.activesustainability.com/water/what-is-reverse-osmosis-desalination/, Accessed May 1, 2023.
58.
Anand
,
B.
,
Shankar
,
R.
,
Murugavelh
,
S.
,
Rivera
,
W.
,
Midhun Prasad
,
K.
, and
Nagarajan
,
R.
,
2021
, “
A Review on Solar Photovoltaic Thermal Integrated Desalination Technologies
,”
Renewable Sustainable Energy Rev.
,
141
, p.
110787
.
59.
Kim
,
J.
, and
Hong
,
S.
,
2018
, “
A Novel Single-Pass Reverse Osmosis Configuration for High-Purity Water Production and Low Energy Consumption in Seawater Desalination
,”
Desalination
,
429
, pp.
142
154
.
60.
Singh
,
R.
,
2016
, “Desalination and On-Site Energy for Groundwater Treatment in Developing Countries Using Fuel Cells,”
Emerging Membrane Technology for Sustainable Water Treatment
,
M.K.
Patel
and
S.
Bhattacharya
,
Elsevier
,
New York
, pp.
135
162
.
61.
Rezaei
,
M.
,
Mostafaeipour
,
A.
,
Abbaszadeh
,
P.
, and
Arabnia
,
H. R.
,
2018
, “
Hydrogen Production Using Wind Energy From Sea Water: A Case Study on Southern and Northern Coasts of Iran
,”
Energy and Environment
,
29
(
3
), pp.
489
501
.
62.
Schmidt
,
O.
,
Gambhir
,
A.
,
Staffell
,
I.
,
Hawkes
,
A.
,
Nelson
,
J.
, and
Few
,
S.
,
2017
, “
Future Cost and Performance of Water Electrolysis: An Expert Elicitation Study
,”
Int. J. Hydrogen Energy
,
42
(
52
), pp.
30470
30492
.
63.
Li
,
X.
,
Hao
,
X.
,
Abudula
,
A.
, and
Guan
,
G.
,
2016
, “
Nanostructured Catalysts for Electrochemical Water Splitting: Current State and Prospects
,”
J. Mater. Chem. A
,
4
(
31
), pp.
11973
12000
.
64.
Khan
,
M. A.
,
Al-Attas
,
T.
,
Roy
,
S.
,
Rahman
,
M. M.
,
Ghaffour
,
N.
,
Thangadurai
,
V.
,
Larter
,
S.
,
Hu
,
J.
,
Ajayan
,
P. M.
, and
Kibria
,
M. G.
,
2021
, “
Seawater Electrolysis for Hydrogen Production: A Solution Looking for a Problem?
,”
Energy Environ. Sci.
,
14
(
9
), pp.
5296
5321
.
65.
Saba
,
S. M.
,
Müller
,
M.
,
Robinius
,
M.
, and
Stolten
,
D.
,
2018
, “
The Investment Costs of Electrolysis—A Comparison of Cost Studies From the Past 30 Years
,”
Int. J. Hydrogen Energy
,
43
(
3
), pp.
1209
1223
.
66.
“The Cost of Desalination,” Advisian, https://www.advisian.com/en/global-perspectives/the-cost-of-desalination, Accessed May 1, 2023.
67.
Zhou
,
J.
,
Chang
,
V. W.-C.
, and
Fane
,
A. G.
,
2013
, “
An Improved Life Cycle Impact Assessment (LCIA) Approach for Assessing Aquatic Eco-Toxic Impact of Brine Disposal From Seawater Desalination Plants
,”
Desalination
,
308
, pp.
233
241
.
68.
Khawaji
,
A. D.
,
Kutubkhanaha
,
I. K.
, and
Wieb
,
J.-M.
,
2007
, “
A 13.3 MGD Seawater RO Desalination Plant for Yanbu Industrial City
,”
Desalination
,
203
(
1–3
), pp.
176
188
.
69.
Kim
,
J.
,
Park
,
K.
,
Yang
,
D. R.
, and
Hong
,
S.
,
2019
, “
A Comprehensive Review of Energy Consumption of Seawater Reverse Osmosis Desalination Plants
,”
Appl. Energy
,
254
, p.
113652
.
You do not currently have access to this content.