Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Employed extensively for lithium-ion battery health assessment and capacity estimation, incremental capacity analysis (ICA) traditionally requires substantial time investment under standard charge and discharge conditions. However, in practical usage, Li-ion batteries rarely undergo full cycles. This study introduces aging temperature cycles within different partial intervals of the battery, integrating local ICA curves, peak range analysis, and incremental slope (IS) as an auxiliary feature. The extracted partial incremental capacity curves serve as features for state of health (SOH) estimation. The proposed temperature-rate-based SOH estimation method relies on a mechanistic function, analyzing relationships between temperature, different partial intervals, aging rate, and aging. Experimental tests on FCB21700 batteries demonstrate accurate SOH estimation using only partial charge curves, with an average error below 2.82%. By manipulating charging and discharging ranges, the method significantly extends battery lifespan, offering promising widespread applications.

References

1.
Yang
,
D.
,
Wang
,
Y.
,
Pan
,
R.
,
Chen
,
R.
, and
Chen
,
Z.
,
2018
, “
State-of-Health Estimation for the Lithium-Ion Battery Based on Support Vector Regression
,”
Appl. Energy
,
227
, pp.
273
283
.
2.
Li
,
Y.
,
Abdel-Monema
,
M.
,
Gopalakrishnan
,
R.
,
Berecibar
,
M.
,
Nanini-Maury
,
E.
,
Omar
,
N.
,
Van Den Bossche
,
P.
, and
Van Mierlo
,
J.
,
2018
, “
A Quick On-Line State of Health Estimation Method for Li-Ion Battery With Incremental Capacity Curves Processed by Gaussian Filter
,”
J. Power Sources
,
393
, p.
230
.
3.
Weng
,
C.
,
Feng
,
X.
,
Sun
,
J.
, and
Peng
,
H.
,
2016
, “
State-of-Health Monitoring of Lithium-Ion Battery Modules and Packs Via Incremental Capacity Peak Tracking
,”
Appl. Energy
,
180
, pp.
360
368
.
4.
Wang
,
L.
,
Qiao
,
S.
,
Lu
,
D.
,
Zhang
,
Y.
,
Pan
,
C.
,
He
,
Z.
,
Zhao
,
X.
, and
Wang
,
R.
,
2022
, “
State of Health Estimation of Lithium-Ion Battery in Wide Temperature Range Via Temperature-Aging Coupling Mechanism Analysis
,”
J. Energy Storage
,
47
(
1
), p.
103618
.
5.
Wu
,
Y.
,
Xue
,
Q.
,
Shen
,
J.
,
Lei
,
Z.
,
Chen
,
Z.
, and
Liu
,
Y.
,
2020
, “
State of Health Estimation for Lithium-Ion Batteries Based on Healthy Features and Long Short-Term Memory
,”
IEEE Access
,
8
, pp.
28533
28547
.
6.
Li
,
X.
,
Yuan
,
C.
,
Li
,
X.
, and
Wang
,
Z.
,
2020
, “
State of Health Estimation for Li-Ion Battery Using Incremental Capacity Analysis and Gaussian Process Regression
,”
Energy
,
190
, p.
116467
.
7.
Li
,
Y.
,
Liu
,
K.
,
Foley
,
A. M.
,
Zülke
,
A.
,
Berecibar
,
M.
,
Nanini-Maury
,
E.
,
Van Mierlo
,
J.
, and
Hoster
,
H. E.
,
2019
, “
Data-Driven Health Estimation and Lifetime Prediction of Lithium-Ion Batteries: A Review
,”
Renew. Sustain. Energy Rev.
,
113
, p.
109254
.
8.
Zhou
,
H.
,
Zhang
,
L.
,
Zhang
,
D.
,
Chen
,
S.
,
Coxon
,
P. R.
,
He
,
X.
,
Coto
,
M.
,
Kim
,
H.-K.
,
Xi
,
K.
, and
Ding
,
S.
,
2016
, “
A Universal Synthetic Route to Carbon Nanotube/Transition Metal Oxide Nano-composites for Lithium Ion Batteries and Electrochemical Capacitors
,”
Sci. Rep.
,
6
(
1
), p.
37752
.
9.
Gao
,
Z.
,
Chin
,
C.
,
Chiew
,
J.
,
Jia
,
J.
, and
Zhang
,
C.
,
2017
, “
Design and Implementation of a Smart Lithium-Ion Battery System With Real-Time Fault Diagnosis Capability for Electric Vehicles
,”
Energies
,
10
(
10
), p.
1503
.
10.
Song
,
Y.
,
Liu
,
D.
,
Liao
,
H.
, and
Peng
,
Y.
,
2020
, “
A Hybrid Statistical Data-Driven Method for On-Line Joint State Estimation of Lithium-Ion Batteries
,”
Appl. Energy
,
261
, p.
114408
.
11.
Tian
,
A.
,
Yang
,
C.
,
Gao
,
Y.
,
Li
,
T.
,
Wang
,
L.
,
Chang
,
C.
, and
Jiang
,
J.
,
2023
, “
A State of Health Estimation Method of Lithium-Ion Batteries Based on DT-IC-V Health Features Extracted From Partial Charging Segment
,”
Int. J. Green Energy
,
20
(
9
), pp.
997
1011
.
12.
Lin
,
C.
,
Xu
,
J.
,
Shi
,
M.
, and
Mei
,
X.
,
2022
, “
Constant Current Charging Time Based Fast State-of-Health Estimation for Lithium-Ion Batteries
,”
Energy
,
247
, p.
123556
.
13.
Lin
,
M.
,
Wu
,
D.
,
Meng
,
J.
,
Wu
,
J.
, and
Wu
,
H.
,
2022
, “
A Multi-feature-Based Multi-model Fusion Method for State of Health Estimation of Lithium-Ion Batteries
,”
J. Power Sources
,
518
, p.
230774
.
14.
Liu
,
H.
,
Deng
,
Z.
,
Yang
,
Y.
,
Lu
,
C.
,
Li
,
B.
,
Liu
,
C.
, and
Cheng
,
D.
,
2023
, “
Capacity Evaluation and Degradation Analysis of Lithium-Ion Battery Packs for On-Road Electric Vehicles
,”
J. Energy Storage
,
65
(
1
), p.
107270
.
15.
Meng
,
J.
,
Cai
,
L.
,
Stroe
,
D.-I.
,
Luo
,
G.
,
Sui
,
X.
, and
Teodorescu
,
R.
,
2019
, “
Lithium-Ion Battery State-of-Health Estimation in Electric Vehicle Using Optimized Partial Charging Voltage Profiles
,”
Energy
,
185
(
1
), pp.
1054
1062
.
16.
Noh
,
T.-W.
,
Kim
,
D. H.
, and
Lee
,
B. K.
,
2023
, “
Online State-of-Health Estimation Algorithm for Lithium-Ion Batteries in Electric Vehicles Based on Compression Ratio of Open Circuit Voltage
,”
J. Energy Storage
,
57
, p.
106258
.
17.
Remmlinger
,
J.
,
Buchholz
,
M.
,
Meiler
,
M.
,
Bernreuter
,
P.
, and
Dietmayer
,
K.
,
2011
, “
State-of-Health Monitoring of Lithium-Ion Batteries in Electric Vehicles by On-Board Internal Resistance Estimation
,”
J. Power Sources
,
196
(
12
), pp.
5357
5363
.
18.
Li
,
W.
,
He
,
M.
,
Wang
,
Y.
, and
Shao
,
F.
,
2022
, “
Study on the Capacity Degradation Mechanism and Capacity Predication of Lithium-Ion Battery Under Different Vibration Conditions in Six Degrees-of-Freedom
,”
ASME J. Electrochem. Energy Convers. Storage
,
20
(
2
), p.
021001
.
19.
Yao
,
J.
, and
Han
,
T.
,
2023
, “
Data-Driven Lithium-Ion Batteries Capacity Estimation Based on Deep Transfer Learning Using Partial Segment of Charging/Discharging Data
,”
Energy
,
271
, p.
127033
.
20.
Lin
,
J.
, and
Wei
,
M.
,
2021
, “
Remaining Useful Life Prediction of Lithium-Ion Battery Based on Auto-regression and Particle Filter
,”
Int. J. Intell. Comput. Cybern.
,
14
(
2
), pp.
218
237
.
21.
Tian
,
J.
,
Xiong
,
R.
,
Shen
,
W.
,
Lu
,
J.
, and
Yang
,
X.-G.
,
2021
, “
Deep Neural Network Battery Charging Curve Prediction Using 30 Points Collected in 10 Min
,”
Joule
,
5
(
6
), pp.
1521
1534
.
22.
Ni
,
Y.
,
Xu
,
J.
,
Zhu
,
C.
, and
Pei
,
L.
,
2022
, “
Accurate Residual Capacity Estimation of Retired LiFePO4 Batteries Based on Mechanism and Data-Driven Model
,”
Appl. Energy
,
305
(
1
), p.
117922
.
23.
Kim
,
M.
,
Chun
,
H.
,
Kim
,
J.
,
Kim
,
K.
,
Yu
,
J.
,
Kim
,
T.
, and
Han
,
S.
,
2019
, “
Data-Efficient Parameter Identification of Electrochemical Lithium-Ion Battery Model Using Deep Bayesian Harmony Search
,”
Appl. Energy
,
254
(
1
), p.
113644
.
24.
Tian
,
J.
,
Xiong
,
R.
,
Shen
,
W.
, and
Lu
,
J.
,
2021
, “
State-of-Charge Estimation of LiFePO4 Batteries in Electric Vehicles: A Deep-Learning Enabled Approach
,”
Appl. Energy
,
291
, p.
116812
.
25.
Khaleghi
,
S.
,
Karimi
,
D.
,
Beheshti
,
S. H.
,
Hosen
,
M. S.
,
Behi
,
H.
,
Berecibar
,
M.
, and
Van Mierlo
,
J.
,
2021
, “
Online Health Diagnosis of Lithium-Ion Batteries Based on Nonlinear Autoregressive Neural Network
,”
Appl. Energy
,
282
(
1
), p.
116159
.
26.
Han
,
T.
,
Wang
,
Z.
, and
Meng
,
H.
,
2022
, “
End-to-End Capacity Estimation of Lithium-Ion Batteries With an Enhanced Long Short-Term Memory Network Considering Domain Adaptation
,”
J. Power Sources
,
520
, p.
230823
.
27.
Ali
,
M. U.
,
Kamran
,
M. A.
,
Kumar
,
P. S.
,
Himanshu Nengroo
,
S. H.
,
Khan
,
M. A.
,
Hussain
,
A.
, and
Kim
,
H.-J.
,
2018
, “
An Online Data-Driven Model Identification and Adaptive State of Charge Estimation Approach for Lithium-Ion-Batteries Using the Lagrange Multiplier Method
,”
Energies
,
11
(
11
), p.
2940
.
28.
Chen
,
X.
,
Kim
,
K. T.
, and
Youn
,
H. Y.
,
2022
, “
Feature Matching and Instance Reweighting With Transfer Learning for Human Activity Recognition Using Smartphone
,”
J. Supercomput.
,
78
(
1
), pp.
712
739
.
29.
Fasahat
,
M.
, and
Manthouri
,
M.
,
2020
, “
State of Charge Estimation of Lithium-Ion Batteries Using Hybrid Autoencoder and Long Short Term Memory Neural Networks
,”
J. Power Sources
,
469
, p.
228375
.
30.
Li
,
X.
,
Yuan
,
C.
, and
Wang
,
Z.
,
2020
, “
State of Health Estimation for Li-Ion Battery Via Partial Incremental Capacity Analysis Based on Support Vector Regression
,”
Energy
,
203
, p.
117852
.
31.
Jiang
,
B.
,
Dai
,
H.
, and
Wei
,
X.
,
2020
, “
Incremental Capacity Analysis Based Adaptive Capacity Estimation for Lithium-Ion Battery Considering Charging Condition
,”
Appl. Energy
,
269
(
1
), p.
115074
.
32.
Wang
,
Z.
,
Yang
,
F.
,
Xu
,
Q.
,
Wang
,
Y.
,
Yan
,
H.
, and
Xie
,
M.
,
2023
, “
Capacity Estimation of Lithium-Ion Batteries Based on Data Aggregation and Feature Fusion Via Graph Neural Network
,”
Appl. Energy
,
336
, p.
120808
.
33.
Chen
,
J.
,
Zhang
,
Y.
,
Li
,
W.
,
Cheng
,
W.
, and
Zhu
,
Q.
,
2022
, “
State of Charge Estimation for Lithium-Ion Batteries Using Gated Recurrent Unit Recurrent Neural Network and Adaptive Kalman Filter
,”
Energy Storage
,
55
(
1
), p.
105396
.
34.
Fu
,
S.
,
Tao
,
S.
,
Fan
,
H.
,
He
,
K.
,
Liu
,
X.
,
Tao
,
Y.
,
Zuo
,
J.
,
Zhang
,
X.
,
Wang
,
Y.
, and
Sun
,
Y.
,
2024
, “
Data-Driven Capacity Estimation for Lithium-Ion Batteries With Feature Matching Based Transfer Learning Method
,”
Appl. Energy
,
353
(
1
), p.
121991
.
35.
Zhang
,
Z.
,
Li
,
L.
,
Li
,
X.
,
Hu
,
Y.
,
Huang
,
K.
,
Xue
,
B.
,
Wang
,
Y.
, and
Yu
,
Y.
,
2022
, “
State-of-Health Estimation for the Lithium-Ion Battery Based on Gradient Boosting Decision Tree With Autonomous Selection of Excellent Features
,”
Int. J. Energy Res.
,
46
(
2
), pp.
1756
1765
.
36.
Meng
,
H.
,
Geng
,
M.
, and
Han
,
T.
,
2023
, “
Long Short-Term Memory Network With Bayesian Optimization for Health Prognostics of Lithium-Ion Batteries Based on Partial Incremental Capacity Analysis
,”
Reliab. Eng. Syst. Saf.
,
236
, p.
109288
.
37.
Zhang
,
S.
,
Zhai
,
B.
,
Guo
,
X.
,
Wang
,
K.
,
Peng
,
N.
, and
Zhang
,
X.
,
2019
, “
Synchronous Estimation of State of Health and Remaining Useful Lifetime for Lithium-Ion Battery Using the Incremental Capacity and Artificial Neural Networks
,”
J. Energy Storage
,
26
(
1
), p.
100951
.
You do not currently have access to this content.