Bi2O3 doped scandia stabilized zirconia systems have shown promise for use as electrolytes in intermediate temperature solid oxide fuel cells (IT-SOFC's). Sintering properties, crystal phase transformation, and electrical conductivity of the Bi2O3 doped Sc2O3ZrO2 systems were investigated. The effect of Bi2O3 doping from 0mol% to 2.0mol% and different sintering temperatures on the properties and performance of the electrolyte were examined. The presence of Bi2O3 aided the sintering process and better sintering for the doped system was achieved at lower temperatures. The cubic phase was successfully stabilized at room temperature with concentrations of 1mol% and 2mol%Bi2O3 sintered at 11001400°C. The achievement of a cubic structure depends on both the Bi2O3 concentration and the sintering temperature. Higher electrical conductivity was achieved with Bi2O3 doped Sc2O3ZrO2 systems than 10ScSZ below 600°C. A maximum conductivity of 1.68×102S/cm at 700°C was obtained for 2mol%Bi2O3 doped sample sintered at 1100°C.

1.
Yamamoto
,
O.
, 2000, “
Solid Oxide Fuel Cells: Fundamental Aspects and Prospects
,”
Electrochim. Acta
0013-4686,
45
(
15–16
), pp.
2423
2435
.
2.
Sumi
,
H.
,
Ukai
,
K.
,
Hisada
,
K.
,
Mizutani
,
Y.
, and
Yamamoto
,
O.
, 2003, “
High Performance Cell Development Using Scandia Doped Zirconia Electrolyte for Low Temperature Operating SOFCs
,”
Proc.-Electrochem. Soc.
0161-6374,
07
, pp.
995
1002
.
3.
Lee
,
D.
,
Lee
,
I.
,
Jeon
,
Y.
, and
Song
,
R.
, 2005, “
Characterization of Scandia Stabilized Zirconia Prepared by Glycine Nitrate Process and its Performance as the Electrolyte for IT-SOFC
,”
Solid State Ionics
0167-2738,
176
(
11–12
), pp.
1021
1025
.
4.
Okamoto
,
M.
,
Akimune
,
Y.
,
Furuya
,
K.
,
Hatano
,
M.
,
Yamanaka
,
M.
, and
Uchiyama
,
M.
, 2005, “
Phase Transition and Electrical Conductivity of Scandia-Stabilized Zirconia Prepared by Spark Plasma Sintering Process
,”
Solid State Ionics
0167-2738,
176
(
7–8
), pp.
675
680
.
5.
Yamamoto
,
O.
,
Arati
,
Y.
,
Takeda
,
Y.
,
Imanishi
,
N.
,
Mizutani
,
Y.
,
Kawai
,
M.
, and
Nakamura
,
Y.
, 1995, “
Electrical Conductivity of Stabilized Zirconia With Ytterbia and Scandia
,”
Solid State Ionics
0167-2738,
79
, pp.
137
142
.
6.
Lei
,
Z.
, and
Zhu
,
Q.
, 2005, “
Low Temperature Processing of Dense Nanocrystalline Scandia-Doped Zirconia (Scsz) Ceramics
,”
Solid State Ionics
0167-2738,
176
, pp.
2791
2797
.
7.
O.
Yamamoto
,
Y.
Takeda
,
N.
Imanishi
,
Y.
Arati
,
H.
Sakai
,
Y.
Mizutani
,
M.
Kawai
,
Y.
Nakamura
and
N.
Sammes
, 1996, “
Oxide Ion Conductivity in the ZrO2–Sc2O3 System
,”
Solid State Ionics, New Developments
,
B. V. R.
Chowdari
,
M. A. K. L.
Dissanayake
, and
M. A.
Careem
, eds.,
Asian Society for Solid State Ionics
,
World Scientific Publishers
.
8.
Tietz
,
F.
,
Fischer
,
W.
,
Hauber
,
Th.
, and
Mariotto
,
G.
, 1997, “
Structural Evolution of Sc-Containing Zirconia Electrolytes
,”
Solid State Ionics
0167-2738,
100
, pp.
289
295
.
9.
Hirano
,
M.
,
Oda
,
T.
,
Ukai
,
K.
, and
Mizutani
,
Y.
, 2003, “
Effect Of Bi2O3 Additives in Sc Stabilized Zirconia Electrolyte on a Stability of Crystal Phase and Electrolyte Properties
,”
Solid State Ionics
0167-2738,
158
, pp.
215
223
.
10.
Gil
,
V.
,
Tartaj
,
J.
,
Moure
,
C.
, and
Duran
,
P.
, 2006, “
Sintering, Microstructural Development, and Electrical Properties of Gadolinia-Doped Ceria Electrolyte With Bismuth Oxide as a Sintering Aid
,”
J. Eur. Ceram. Soc.
0955-2219,
26
, pp.
3161
3171
.
11.
Kjerulf-Jenson
,
N.
,
Berg
,
R. W.
, and
Poulson
,
F. W.
, 1996, “
Raman Spectroscopic Characterization of ZrO2 and Yttrium Stabilized Zirconia
,”
B.
Thorstensen
, ed.,
Second European Fuel Cell Forum
, Oslo, Norway, pp.
647
656
.
12.
Fujimori
,
H.
,
Yashima
,
M.
,
Kakihana
,
M.
, and
Yoshimura
,
M.
, 2002, “
The B-Cubic Phase Transition of Scandia-Doped Zirconia Solid Solution: Calorimetry, X-Ray Diffraction, and Raman Scattering
,”
J. Appl. Phys.
0021-8979,
91
, pp.
6493
6498
.
13.
Denisov
,
V. N.
,
Ivlev
,
A. N.
,
Lipin
,
A. S.
,
Mavrin
,
B. N.
, and
Orlov
,
V. G.
, 1997, “
Raman Spectra and Lattice Dynamics of Single-Crystal Alpha-Bi2O3
,”
J. Phys.: Condens. Matter
0953-8984,
9
(
23
), pp.
4967
4978
.
14.
Denisov
,
V. N.
,
Ivlev
,
A. N.
,
Lipin
,
A. S.
,
Mavrin
,
B. N.
,
Orlov
,
V. G.
, and
Tischenko
,
E. A.
, 1996, “
Polarized Raman Spectra of Single Crystal Alpha-Bi2O3
,”
Czech. J. Phys.
0011-4626,
46
, pp.
2667
2668
.
15.
Betsch
,
R. J.
, and
White
,
W. B.
, 1978, “
Vibrational Spectra of Bismuth Oxide and the Sillenite-Structure Bismuth Oxide Derivatives
,”
Spectrochim. Acta, Part A
0584-8539,
34
, pp.
505
14
.
16.
Gulino
,
A.
,
La Delfa
,
S.
,
Fragala
,
I.
, and
Egdell
,
R. G.
, 1996, “
Low-Temperature Stabilization of Tetragonal Zirconia by Bismuth
,”
Chem. Mater.
0897-4756,
8
, pp.
1287
1291
.
17.
Gouteron
,
J.
,
Zarembowitch
,
J.
, and
Lejus
,
A. M.
, 1979, “
Raman Spectra of Single-Crystalline Cubic Ytterbium, Holmium, Yttrium, and Scandium Sesquioxides
,”
C. R. Seances Acad. Sci., Ser. C
0567-6541,
289
(
8
), pp.
243
246
.
18.
Yashima
,
M.
,
Kakihana
,
M.
, and
Yoshimura
,
M.
, 1996, “
Metastable-Stable Phase Diagrams in the Zirconia-Containing Systems Utilized in Solid-Oxide Fuel Cell Application
,”
Solid State Ionics
0167-2738,
86–88
, pp.
1131
1149
.
You do not currently have access to this content.