Abstract

This paper focuses on the influence of carrier gas flow rate (CGFR) and sheath gas flow rate (SGFR) on the quality of conductive traces printed with nanoparticle inks using aerosol jet printing (AJP). This investigation was motivated by previous results of two AJP specimens that were printed at different gas flow rates and yielded significantly different thermal cycling durability lifetimes. A parametric sensitivity study was executed by printing and examining serpentine trace structures at 15 different combinations of CGFRs and SGFRs. The analysis included quantifying the trace's macroscale geometry, electrical properties, and micromorphological features. Interesting macroscale results include an increase in effective conductivity with increasing CGFR. At the microscale, image processing of high magnification scanning electron microscope (SEM) images of the printed traces revealed that agglomerations of silver clusters on the surface of traces became coarser at higher CGFR and also that agglomerates in the bulk were finer than those on the surface. Crystalline silver deposits were observed at all flow rates. In addition, cross sectioning of the printed traces showed higher incidences of buried cohesive cracking at higher gas flow rates. These cohesive cracks reduce the robustness of the traces but may not always be visible from the surface. The degree of cohesive cracking was seen to be broadly correlated with the coarseness of the surface agglomerates, thus suggesting that the coarseness of surface agglomerates may provide a visible surrogate measure of the print quality. The results of this study suggest that print quality may degrade as gas flow rates increase.

References

1.
Seifert
,
T.
,
Sowade
,
E.
,
Roscher
,
F.
,
Wiemer
,
M.
,
Gessner
,
T.
, and
Baumann
,
R. R.
,
2015
, “
Additive Manufacturing Technologies Compared: Morphology of Deposits of Silver Ink Using Inkjet and Aerosol Jet Printing
,”
Ind. Eng. Chem. Res.
,
54
, pp.
769
779
.10.1021/ie503636c
2.
Binder
,
S.
,
Glatthaar
,
M.
, and
Radlein
,
E.
,
2014
, “
Analytical Investigation of Aerosol Jet Printing
,”
Aerosol. Sci. Technol.
,
48
(
9
), pp.
924
929
.10.1080/02786826.2014.940439
3.
Secor
,
E. B.
,
2018
, “
Principles of Aerosol Jet Printing
,”
Flexible Printed Electron.
,
3
(
3
), p.
035002
.10.1088/2058-8585/aace28
4.
Rahman
,
T.
,
Renaud
,
L.
,
Heo
,
D.
,
Renn
,
M.
, and
Panat
,
R.
,
2015
, “
Aerosol Based Direct-Write Micro-Additive Fabrication Method for Sub-mm 3D Metal-Dielectric Structures
,”
J. Micromech. Microeng.
,
25
(
10
), p.
107002
.10.1088/0960-1317/25/10/107002
5.
Seifert
,
T.
,
Baum
,
M.
,
Roscher
,
F.
,
Wiemer
,
M.
, and
Gessner
,
T.
,
2015
, “
Aerosol Jet Printing of Nano Particle Based Electrical Chip Interconnects
,”
Mater. Today
,
2
, pp.
4262
4271
.10.1016/j.matpr.2015.09.012
6.
Hoey
,
J. M.
,
Lutfurakhmanov
,
A.
,
Schulz
,
D. L.
, and
Akhatov
,
I. S.
,
2012
, “
A Review on Aerosol-Based Direct-Write and Its Applications for Microelectronics
,”
J. Nanotechnol.
, 2012, p.
324380
.10.1155/2012/324380
7.
Jones
,
C. S.
,
Lu
,
X.
,
Renn
,
M.
,
Stroder
,
M.
, and
Shih
,
W.-S.
,
2010
, “
Aerosol-Jet-Printed, High-Speed, Flexible Thin-Film Transistor Made Using Single-Walled Carbon Nanotube Solution
,”
Microelectron. Eng.
,
87
(
3
), p.
434
.10.1016/j.mee.2009.05.034
8.
Rother
,
M.
,
Brohmann
,
M.
,
Yang
,
S.
,
Grimm
,
S. B.
,
Schießl
,
S. P.
,
Graf
,
A.
, and
Zaumseil
,
J.
,
2017
, “
Aerosol Jet Printing of Polymer Sorted (6,5) Carbon Nanotubes for Field‐Effect Transistors With High Reproducibility
,”
Adv. Electron. Mater.
,
3
(
8
), p.
1700080
.10.1002/aelm.201700080
9.
Salary
,
R.
,
Lombardi
,
J. P.
,
Rao
,
P. K.
, and
Poliks
,
M. D.
,
2017
, “
Online Monitoring of Functional Electrical Properties in Aerosol Jet Printing Additive Manufacturing Process Using Shape-From-Shading Image Analysis
,”
ASME J. Manuf. Sci. Eng.
,
139
(
10
), p.
101010
.10.1115/1.4036660
10.
Cao
,
C.
,
Andrews
,
J. B.
, and
Franklin
,
A. D.
,
2017
, “
Completely Printed, Flexible, Stable, and Hysteresis‐Free Carbon Nanotube Thin‐Film Transistors Via Aerosol Jet Printing
,”
Adv. Electron. Mater.
,
3
(
5
), p.
1700057
.10.1002/aelm.201700057
11.
Deiner
,
L. J.
, and
Reitz
,
T. L.
,
2017
, “
Inkjet and Aerosol Jet Printing of Electrochemical Devices for Energy Conversion and Storage
,”
Adv. Eng. Mater.
,
19
(
7
), p.
1600878
.10.1002/adem.201600878
12.
Smith
,
M.
,
Choi
,
Y. S.
,
Boughey
,
C.
, and
Kar-Narayan
,
S.
,
2017
, “
Controlling and Assessing the Quality of Aerosol Jet Printed Features for Large Area and Flexible Electronics
,”
Flexible Printed Electron.
,
2
(
1
), p.
015004
.10.1088/2058-8585/aa5af9
13.
Yang
,
C.
,
Zhou
,
E.
,
Miyanishi
,
S.
,
Hashimoto
,
K.
, and
Tajima
,
K.
,
2011
, “
Preparation of Active Layers in Polymer Solar Cells by Aerosol Jet Printing
,”
ACS Appl. Mater. Interfaces
,
3
(
10
), pp.
4053
4058
.10.1021/am200907k
14.
Liu
,
R.
,
Ding
,
H.
,
Lin
,
J.
,
Shen
,
F.
,
Cui
,
Z.
, and
Zhang
,
T.
,
2012
, “
Fabrication of Platinum-Decorated Single-Walled Carbon Nanotube Based Hydrogen Sensors by Aerosol Jet Printing
,”
Nanotechnology
,
23
(
50
), p.
505301
.10.1088/0957-4484/23/50/505301
15.
Gu
,
Y.
,
Park
,
D.
,
Bowen
,
D.
,
Das
,
S.
, and
Hines
,
D. R.
,
2018
, “
Direct-Write Printed, Solid-Core Solenoid Inductors With Commercially Relevant Inductances
,”
Adv. Mater. Technol.
, 4(1), p.
1800312
.10.1002/admt.201800312
16.
Saleh
,
M. S.
,
Hu
,
C.
, and
Panat
,
R.
,
2017
, “
Three-Dimensional Microarchitected Materials and Devices Using Nanoparticle Assembly by Pointwise Spatial Printing
,”
Sci. Adv.
,
3
(
3
), p.
e1601986
.10.1126/sciadv.1601986
17.
Saleh
,
M. S.
,
Li
,
J.
,
Park
,
J.
, and
Panat
,
R.
,
2018
, “
3D Printed Hierarchically-Porous Microlattice Electrode Materials for Exceptionally High Specific Capacity and Areal Capacity Lithium Ion Batteries
,”
Addit. Manuf.
,
23
, pp.
70
78
.10.1016/j.addma.2018.07.006
18.
Hon
,
K.
,
Li
,
L.
, and
Hutchings
,
I. M.
,
2008
, “
Direct Writing Technology—Advances and Developments
,”
CIRP Ann.
,
57
(
2
), pp.
601
620
.10.1016/j.cirp.2008.09.006
19.
Chen
,
G.
,
Gu
,
Y.
,
Tsang
,
H.
,
Hines
,
D. R.
, and
Das
,
S.
,
2018
, “
The Effect of Droplet Sizes on Overspray in Aerosol-Jet Printing
,”
Adv. Eng. Mater.
,
20
(
8
), p.
1701084
.10.1002/adem.201701084
20.
Dalal
,
N.
,
2018
, “
Influence of Gas Flow Rates on Trace Quality and Reliability in a Selected Conductor Ink Printed with an Aerosol Jet Printer
,” M.S. thesis, University of Maryland, College Park, MD.
21.
Roberson
,
D. A.
,
Wicker
,
R. B.
,
Murr
,
L. E.
,
Church
,
K.
, and
MacDonald
,
E.
,
2011
, “
Microstructural and Process Characterization of Conductive Traces Printed From Ag Particulate Inks
,”
Materials
,
4
(
6
), pp.
963
979
.10.3390/ma4060963
22.
Kang
,
J. S.
,
Kim
,
H. S.
,
Ryu
,
J.
,
Hahn
,
H. T.
,
Jang
,
S.
, and
Joung
,
J. W.
,
2010
, “
Inkjet Printed Electronics Using Copper Nanoparticle Ink
,”
J. Mater. Sci.: Mater. Electron.
,
21
, pp.
1213
1220
.10.1007/s10854-009-0049-3
23.
Mahajan
,
A.
,
Frisbie
,
C. D.
, and
Francis
,
L. F.
,
2013
, “
Optimization of Aerosol Jet Printing for High-Resolution, High-Aspect Ratio Silver Lines
,”
ACS Appl. Mater. Interfaces
,
5
(
11
), pp.
4856
4864
.10.1021/am400606y
24.
Salary
,
R.
,
Lombardi
,
J. P.
,
Samie Tootooni
,
M.
,
Donovan
,
R.
,
Rao
,
P. K.
,
Borgesen
,
P.
, and
Poliks
,
M. D.
,
2017
, “
Computational Fluid Dynamics Modeling and Online Monitoring of Aerosol Jet Printing Process
,”
ASME J. Manuf. Sci. Eng.
,
139
(
2
), p.
021015
.10.1115/1.4034591
25.
Gu
,
Y.
,
Gutierrez
,
D.
,
Das
,
S.
, and
Hines
,
D. R.
,
2017
, “
Inkwells for on-Demand Deposition Rate Measurement in Aerosol-Jet Based 3D Printing
,”
J. Micromech. Microeng.
,
27
(
9
), p.
097001
.10.1088/1361-6439/aa817f
26.
Dalal
,
N.
,
Gu
,
Y.
,
Hines
,
D. R.
,
Dasgupta
,
A.
, and
Das
,
S.
,
2019
, “
Cracks in the 3D-Printed Conductive Traces of Silver Nanoparticle Ink
,”
J. Micromech. Microeng.
,
29
(
9
), p.
097001
.10.1088/1361-6439/ab2f25
27.
Serway
,
R. A.
,
1994
,
Principles of Physics
,
Saunders College Pub
,
Fort Worth, TX
.
28.
Gu
,
Y.
,
Hines
,
D. R.
,
Yun
,
V.
,
Antoniak
,
M.
, and
Das
,
S.
,
2017
, “
Aerosol-Jet Printed Fillets for Well-Formed Electrical Connections Between Different Leveled Surfaces
,”
Adv. Mater. Technol.
,
2
(
11
), p.
1700178
.10.1002/admt.201700178
29.
Merilampi
,
S.
,
Laine-Ma
,
T.
, and
Ruuskanen
,
P.
,
2009
, “
The Characterization of Electrically Conductive Silver Ink Patterns on Flexible Substrates
,”
Microelectron. Reliab.
,
49
(
7
), pp.
782
790
.10.1016/j.microrel.2009.04.004
30.
Rahman
,
M. T.
,
McCloy
,
J.
,
Ramana
,
C. V.
, and
Panat
,
R.
,
2016
, “
Structure, Electrical Characteristics, and High-Temperature Stability of Aerosol Jet Printed Silver Nanoparticle Films
,”
J. Appl. Phys.
,
120
(
7
), p.
075305
.10.1063/1.4960779
31.
Cook
,
A.
,
2013
, “
Mechanical and Electrical Fatigue of Aerosol Jet Printed Conductors
,” M.S. thesis, University of New Mexico, Albuquerque, NM.
32.
Singh
,
K. N.
, and
Tirumkudulu
,
M. S.
,
2007
, “
Cracking in Drying Colloidal Films
,”
Phys. Rev. Lett.
,
98
(
21
), p.
218302
.10.1103/PhysRevLett.98.218302
You do not currently have access to this content.