Abstract

Under the action of electrothermal–mechanical coupling, the failure and performance degradation of electronic devices are prone to occur, which has become a significant reliability problem in micro-electronic packaging. The improvement of flip chip reliability by using thermal interface materials was studied. First, a three-dimensional finite element model of the flip chip packaging system and the finite element simulation of electric-thermal-force multifield coupling were conducted. Then, the Joule heating, temperature distribution, thermal stress, and deformation of the flip chip under high current density were analyzed. At the same time, the influence of thermal interface material's thermal conductivity and operating current on flip chip reliability was studied. The result showed that when the thermal interface material (TIM) thermal conductivity increased from 0.2 W/m·K to 6 W/m·K, the maximum temperature and maximum equivalent stress in the flip chip were reduced by 6.35 °C and 14.6 MPa. Then, the reliability experiment of the flip chip connected to the radiator under high current density was performed, and the temperature change in the flip chip under different thermal interface materials was obtained. Finally, through the combination of experiment and simulation, the influence of thermal interface materials on flip chip reliability was analyzed. The result showed that when the thermal interface material's thermal conductivity was 0.2 W/m·K, 3 W/m·K, 6 W/m·K, the corresponding temperature in the flip chip system was 111.2 °C, 105.0 °C, 102.7 °C. It is further confirmed that electronic devices' reliability and service life were effectively improved using the high thermal conductivity boron nitride nanosheets/epoxy composite material prepared in this paper.

References

1.
Liu
,
Z.
,
Li
,
J.
,
Zhou
,
C.
, and
Zhu
,
W.
,
2018
, “
A Molecular Dynamics Study on Thermal and Rheological Properties of BNNS-Epoxy Nanocomposites
,”
Int. J. Heat Mass Transfer
,
126
, pp.
353
362
.10.1016/j.ijheatmasstransfer.2018.05.149
2.
Tian
,
T.
,
Morusupalli
,
R.
,
Shin
,
H.
,
Son
,
H. Y.
,
Byun
,
K. Y.
,
Joo
,
Y. C.
,
Caramto
,
R.
,
Smith
,
L.
,
Shen
,
Y. L.
,
Kunz
,
M.
,
Tamura
,
N.
, and
Budiman
,
A. S.
,
2016
, “
Comparison of Mechanical Stresses of Cu Through-Silicon Via (TSV) Samples Fabricated by Hynix vs. SEMATECH Using Synchrotron X-Ray Microdiffraction for 3D Integration and Reliability
,” 2012 IEEE International Interconnect Technology Conference, San Jose, CA, June 4–6, pp.
1
3
.
3.
Lancaster
,
A.
, and
Keswani
,
M.
,
2018
, “
Integrated Circuit Packaging Review With an Emphasis on 3D Packaging
,”
Int. Vlsi J.
,
60
, pp.
204
212
.10.1016/j.vlsi.2017.09.008
4.
Li
,
J.
,
Tian
,
Q.
,
Zhang
,
H.
,
Chen
,
X.
,
Liu
,
X.
, and
Zhu
,
W.
,
2018
, “
Study on Dipping Mathematical Models for the Solder Flip-Chip Bonding in Microelectronics Packaging
,”
IEEE Trans. Ind. Inf.
,
14
(
11
), pp.
4746
4754
.10.1109/TII.2018.2805297
5.
Chan
,
Y. C.
, and
Yang
,
D.
,
2010
, “
Failure Mechanisms of Solder Interconnects Under Current Stressing in Advanced Electronic Packages
,”
Prog. Mater. Sci.
,
55
(
5
), pp.
428
475
.10.1016/j.pmatsci.2010.01.001
6.
Liu
, Z.,
Li
, J., and
Zhu
, W.,
2018
, “
Investigation on the Joule Heat and Thermal Expansion in Flip Chip Package by Electro-Thermo-Mechanical Coupling Analysis
,”
19th International Conference on Electronic Packaging Technology
, Shanghai, China, Aug. 8–11, pp.
1133
1136
.10.1109/ICEPT.2018.8480832
7.
Liu
,
Z.
,
Tian
,
Q.
,
Li
,
J.
,
Liu
,
X.
, and
Zhu
,
W.
,
2019
, “
An Efficient and High Quality Chemical Mechanical Polishing Method for Copper Surface in 3D TSV Integration
,”
IEEE Trans. Semicond. Manuf.
,
32
(
3
), pp.
346
351
.10.1109/TSM.2019.2923427
8.
Chih
,
C.
,
Tong
,
H. M.
, and
Tu
,
K. N.
,
2010
, “
Electromigration and Thermomigration in Pb-Free Flip-Chip Solder Joints
,”
Annu. Rev. Mater. Res.
,
40
, pp.
531
555
.10.1146/annurev.matsci.38.060407.130253
9.
Li
,
J.
,
Zhang
,
X.
,
Zhou
,
C.
,
Zheng
,
J.
,
Ge
,
D.
, and
Zhu
,
W.
,
2016
, “
New Applications of an Automated System for High-Power LEDs
,”
IEEE/ASME Trans. Mechatronics
,
21
(
2
), pp.
1035
1042
.10.1109/TMECH.2015.2487507
10.
Li
,
J.
,
Ma
,
B.
,
Wang
,
R.
, and
Lei
,
H.
,
2011
, “
Study on a Cooling System Based on Thermoelectric Cooler for Thermal Management of High-Power LEDs
,”
Microelectron. Reliab.
,
51
(
12
), pp.
2210
2215
.10.1016/j.microrel.2011.05.006
11.
Wei
,
T.
,
Xing
,
Q.
,
Lo
,
J.
, and
Lee
,
S.
,
2015
, “
Wafer Level Bumping Technology for High Voltage LED Packaging
,”
10th International Microsystems, Packaging, Assembly & Circuits Technology Conference (IMPACT)
, Taipei, Taiwan, Oct.
21
23
.10.1109/IMPACT.2015.7365183
12.
Jain
,
A.
,
Jones
,
R. E.
,
Chatterjee
,
R.
,
Pozder
,
S.
, and
Huang
,
Z.
,
2008
, “
Thermal Modeling and Design of 3D Integrated Circuits
,” 11th Intersociety
Conference on Thermal & Thermomechanical Phenomena in Electronic Systems
, Orlando, FL, May 28–31, pp.
1139
1145
.10.1109/ITHERM.2008.4544389
13.
Sarvar
,
F.
,
Whalley
,
D.
, and
Conway
,
P.
,
2006
, “
Thermal Interface Materials - A Review of the State of the Art
,”
1st Electronic System Integration Technology Conference
, Dresden, Germany, Sept. 5–7, pp.
1292
1302
.10.1109/ESTC.2006.280178
14.
Chung
,
D. D. L.
,
2001
, “
Thermal Interface Materials
,”
J. Mater. Eng. Perform.
,
10
(
1
), pp.
56
59
.10.1361/105994901770345358
15.
Sham
,
M.-L.
,
Kim
,
J.-K.
, and
Park
,
J.-H.
,
2008
, “
Thermal Performance of Flip Chip Packages: Numerical Study of Thermo-Mechanical Interactions
,”
Comput. Mater. Sci.
,
43
(
3
), pp.
469
480
.10.1016/j.commatsci.2007.12.008
16.
Zhang
,
Z.
,
Qu
,
J.
,
Feng
,
Y.
, and
Feng
,
W.
,
2018
, “
Assembly of Graphene-Aligned Polymer Composites for Thermal Conductive Applications
,”
Compos. Commun.
,
9
, pp.
33
41
.10.1016/j.coco.2018.04.009
17.
Kandasamy
,
R.
, and
Mujumdar
,
A. S.
,
2009
, “
Interface Thermal Characteristics of Flip Chip Packages – a Numerical Study
,”
Appl. Therm. Eng.
,
29
(
5–6
), pp.
822
829
.10.1016/j.applthermaleng.2008.04.002
18.
Li
,
J.
,
Li
,
X.
,
Zheng
,
Y.
,
Liu
,
Z.
,
Tian
,
Q.
, and
Liu
,
X.
,
2019
, “
New Underfill Material Based on Copper Nanoparticles Coated With Silica for High Thermally Conductive and Electrically Insulating Epoxy Composites
,”
J. Mater. Sci.
,
54
(
8
), pp.
6258
6271
.10.1007/s10853-019-03335-9
19.
Gu
,
J.
,
Zhang
,
Q.
,
Dang
,
J.
, and
Xie
,
C.
,
2012
, “
Thermal Conductivity Epoxy Resin Composites Filled With Boron Nitride
,”
Polym. Adv. Technol.
,
23
(
6
), pp.
1025
1028
.10.1002/pat.2063
20.
Yuan
,
C.
,
Xie
,
B.
,
Huang
,
M.
,
Wu
,
R.
, and
Luo
,
X.
,
2016
, “
Thermal Conductivity Enhancement of Platelets Aligned Composites With Volume Fraction From 10% to 20%
,”
Int. J. Heat Mass Transfer
,
94
, pp.
20
28
.10.1016/j.ijheatmasstransfer.2015.11.045
21.
Fang
,
H.
,
Bai
,
S.-L.
, and
Wong
,
C. P.
,
2018
, “
Microstructure Engineering of Graphene Towards Highly Thermal Conductive Composites
,”
Compos. Part a-Appl. Sci. Manuf.
,
112
, pp.
216
238
.10.1016/j.compositesa.2018.06.010
22.
Kim
,
K.
, and
Kim
,
J.
,
2016
, “
Vertical Filler Alignment of Boron Nitride/Epoxy Composite for Thermal Conductivity Enhancement Via External Magnetic Field
,”
Int. J. Therm. Sci.
,
100
, pp.
29
36
.10.1016/j.ijthermalsci.2015.09.013
23.
Hu
,
J.
,
Huang
,
Y.
,
Yao
,
Y.
,
Pan
,
G.
,
Sun
,
J.
,
Zeng
,
X.
,
Sun
,
R.
,
Xu
,
J.-B.
,
Song
,
B.
, and
Wong
,
C.-P.
,
2017
, “
Polymer Composite With Improved Thermal Conductivity by Constructing a Hierarchically Ordered Three-Dimensional Interconnected Network of BN
,”
Acs Appl. Mater. Interfaces
,
9
(
15
), pp.
13544
13553
.10.1021/acsami.7b02410
24.
Yu
,
C.
,
Zhang
,
J.
,
Li
,
Z.
,
Tian
,
W.
,
Wang
,
L.
,
Luo
,
J.
,
Li
,
Q.
,
Fan
,
X.
, and
Yao
,
Y.
,
2017
, “
Enhanced Through-Plane Thermal Conductivity of Boron Nitride/Epoxy Composites
,”
Compos. Part A Appl. Sci. Manuf.
,
98
, pp.
25
31
.10.1016/j.compositesa.2017.03.012
25.
An
,
H.
,
Liu
,
Z.
,
Tian
,
Q.
,
Li
,
J.
,
Zhou
,
C.
,
Liu
,
X.
, and
Zhu
,
W.
,
2019
, “
Thermal Behaviors of Nanoparticle Reinforced Epoxy Resins for Microelectronics Packaging
,”
Microelectron. Reliab.
,
93
, pp.
39
44
.10.1016/j.microrel.2019.01.002
26.
Ordóez-Miranda
,
J.
, and
Alvarado-Gil
,
J. J.
,
2010
, “
Effective Thermal Properties of Multilayered Systems With Interface Thermal Resistance in a Hyperbolic Heat Transfer Model
,”
Int. J. Thermophys.
,
31
(
4–5
), pp.
900
925
.10.1007/s10765-010-0777-x
27.
Topol
,
A. W.
,
Tulipe
,
D. C.
,
Shi
,
L. L.
,
Frank
,
D.
,
Bernstein
,
J. K.
,
Steen
,
S.
,
Kumar
,
E. A.
,
Singco
,
G. U.
,
Young
,
A. M.
, and
Guarini
,
K. W.
,
1989
, “
Three-Dimensional Integrated Circuits
,”
IBM Journal of Research and Development
, 50(4.5), pp. 491–506.10.1147/rd.504.0491
28.
Jenkins Franch
,
2003
, “
Impact of Self-Heating on Digital SOI and Strained-Silicon CMOS Circuits
,”
IEEE International Conference on SOI
,
JenkinsFranch
, Newport Beach, CA, Oct. 2–Sept. 29, pp.
161
163
.10.1109/SOI.2003.1242936
29.
Acciani
,
G.
,
Fornarelli
,
G.
, and
Giaquinto
,
A.
,
2011
, “
A Fuzzy Method for Global Quality Index Evaluation of Solder Joints in Surface Mount Technology
,”
IEEE Trans. Ind. Inf.
,
7
(
1
), pp.
115
124
.10.1109/TII.2010.2076292
30.
Coudrain
,
P.
,
Souare
,
P. M.
,
Prieto
,
R.
,
Fiori
,
V.
,
Farcy
,
A.
,
Pailleur
,
L. L.
,
Colonna
,
J.-P.
,
Santos
,
C.
,
Vivet
,
P.
,
Ben-Jamaa
,
H.
,
Dutoit
,
D.
,
de Crecy
,
F.
,
Dumas
,
S.
,
Chancel
,
C.
,
Lattard
,
D.
, and
Cheramy
,
S.
,
2016
, “
Experimental Insights Into Thermal Dissipation in TSV-Based 3-D Integrated Circuits
,”
IEEE Des. Test
,
33
(
3
), pp.
21
36
.10.1109/MDAT.2015.2506678
31.
Han
,
C.-F.
, and
Lin
,
J.-F.
,
2016
, “
Thermally-Induced Failures of Copper Through-Silicon Via Structures Evaluated by the Strain Energy Density Model
,”
Thin Solid Films
,
615
, pp.
281
291
.10.1016/j.tsf.2016.07.038
32.
M.
,
Montano
,
J.
,
Garcia
,
W.
,
Shi
,
M. T.
,
Reiter
,
U.
,
Vadakkan
,
K. L.
,
Phillippe
,
B.
,
Clark
,
M.
,
Valles
,
C.
,
Deppisch
,
J. D.
,
Ferrara-Brown
,
S. G.
,
Jadhav
,
E.
,
Bernal
, and
M. K.
,
Kuan
,
2005
, “
Novel Process Techniques to Reduce Voids in Solder Thermal Interface Materials Used for Flip-Chip Package Applications
,”
ASME
Paper No. HT2005-72747
.10.1115/HT2005-72747
33.
Li
,
J.
,
Zhang
,
Y.
,
Zhang
,
H.
,
Chen
,
Z.
,
Zhou
,
C.
,
Liu
,
X.
, and
Zhu
,
W.
,
2020
, “
The Thermal Cycling Reliability of Copper Pillar Solder Bump in Flip Chip Via Thermal Compression Bonding
,”
Microelectron. Reliab.
,
104
, p.
113543
.10.1016/j.microrel.2019.113543
34.
WangYuan
,
D. Y.
, and
Luo
,
L.
,
2010
, “
Failure Analysis of Sn-3.5Ag Solder Joints for FCOB Using 2-D FEA Model
,”
11th International Conference on Electronic Packaging Technology & High Density Packaging
, Xi'an, China, Aug. 16–19, pp.
624
629
.10.1109/ICEPT.2010.5583882
35.
Ozmat
,
B.
,
1992
, “
Interconnect Technologies and the Thermal Performance of MCM
,”
Compon. Hybrids Manuf. Technol. IEEE Trans.
,
15
(
5
), pp.
860
869
.10.1109/33.180052
36.
Liu
,
Z.
,
Li
,
J.
, and
Liu
,
X.
,
2020
, “
Novel Functionalized BN Nanosheets/Epoxy Composites With Advanced Thermal Conductivity and Mechanical Properties
,”
ACS Appl. Mater. Interfaces
, 12, pp.
6503
6515
.10.1021/acsami.9b21467
37.
Bujard
,
P.
,
1988
, “
Thermal Conductivity of Boron Nitride Filled Epoxy Resins: Temperature Dependence and Influence of Sample Preparation
,”
InterSociety Conference on Thermal Phenomena in the Fabrication & Operation of Electronic Components: I-Therm
, Los Angeles, CA, May 11–13, pp.
41
49
.10.1109/ITHERM.1988.28676
38.
Wang
,
Z.
,
Meng
,
G.
,
Wang
,
L.
,
Tian
,
L.
, and
Cheng
,
Y.
,
2021
, “
Simultaneously Enhanced Dielectric Properties and Through-Plane Thermal Conductivity of Epoxy Composites With Alumina and Boron Nitride Nanosheets
,”
Sci. Rep.
,
11
(
1
), p. 2495. 10.1038/s41598-021-81925-x
You do not currently have access to this content.