Abstract

This study introduces a modified dynamic multiphysics modeling framework to characterize the electromagnetic-electrothermal (EET) coupled behavior of a power conversion system during a long load operation. The modeling framework extends the prior model with more comprehensive analysis and enhanced computational efficiency and modeling simplicity. This framework incorporates a fully integrated electromagnetic circuit (FIEC) model for extracting parasitics, including self and mutual inductances and also exploring their effect on the switching characteristics and power losses, and a dynamic power loss-temperature thermal (PTT) model for describing the temperature-dependent instantaneous electrical behavior and power loss. Moreover, a simple resistance-capacitance (RC) snubber circuit design is applied to prevent overvoltage and diminish voltage oscillations and spike value during the operation, and their power losses are also assessed and considered in the dynamic EET coupled modeling. Furthermore, the proposed PTT model employs an equivalent thermal RC network to calculate the chip junction temperature with a given power. Additionally, a simple power-temperature relationship derived from the FIEC cosimulation is applied for modeling simplicity and computational efficiency. This framework is tested on a three-phase inverter operating with a 180-deg conduction mode. The proposed FIEC cosimulation and computational fluid dynamics thermal models are validated by double pulse (DPT) and infrared thermography experiments, respectively. Moreover, the PTT model is validated compared with the conventional dynamic coupled electrothermal model. Finally, a design guideline for enhanced thermal performance of the tested power conversion system is sought through parametric analysis.

References

1.
Kjaer
,
S. B.
,
Pedersen
,
J. K.
, and
Blaabjerg
,
F.
,
2005
, “
A Review of Single-Phase Grid-Connected Inverters for Photovoltaik Modules
,”
IEEE Trans. Ind. Appl.
,
41
(
5
), pp.
1292
1306
.10.1109/TIA.2005.853371
2.
Mathew
,
J.
, and
Krishnan
,
S.
,
2022
, “
A Review on Transient Thermal Management of Electronic Devices
,”
ASME J. Electron. Packag.
,
144
(
1
), p.
010801
.10.1115/1.4050002
3.
Kanata
,
T.
,
Nishiwaki
,
K.
, and
Hamada
,
K.
,
2010
, “
Development Trends of Power Semiconductors for Hybrid Vehicles
,” Proceedings of the International Power Electronics Conference (
IPEC
), Sapporo, Japan, June 21–24, pp.
778
782
.10.1109/IP EC.2010.5543294
4.
Hanif
,
A.
,
Yu
,
Y.
,
DeVoto
,
D.
, and
Khan
,
F.
,
2019
, “
A Comprehensive Review Toward the State-of-the-Art in Failure and Lifetime Predictions of Power Electronic Devices
,”
IEEE Trans. Power Electron.
,
34
(
5
), pp.
4729
4746
.10.1109/TPEL.2018.2860587
5.
Gonzalez-Hernando
,
F.
,
San-Sebastian
,
J.
,
Garcia-Bediaga
,
A.
,
Arias
,
M.
,
Iannuzzo
,
F.
, and
Blaabjerg
,
F.
,
2019
, “
Wear-Out Condition Monitoring of IGBT and MOSFET Power Modules in Inverter Operation
,”
IEEE Trans. Ind. Appl.
,
55
(
6
), pp.
6184
6192
.10.1109/TIA.2019.2935985
6.
Hu
,
B.
,
Gonzalez
,
J. O.
,
Ran
,
L.
,
Ren
,
H.
,
Zeng
,
Z.
,
Lai
,
W.
,
Gao
,
B.
,
Alatise
,
O.
,
Lu
,
H.
,
Bailey
,
C.
, and
Mawby
,
P.
,
2017
, “
Failure and Reliability Analysis of a SiC Power Module Based on Stress Comparison to a Si Device
,”
IEEE Trans. Device Mater. Reliab.
,
17
(
4
), pp.
727
737
.10.1109/TDMR.2017.2766692
7.
Wang
,
H.
,
2007
, “
Investigation of Power Semiconductor Devices for High Frequency High Density Power Converters
,” Doctoral Thesis in Electrical Engineering,
Virginia Polytechnic Institute and State University
,
Blacksburg, VA
.
8.
Chen
,
Z.
,
Boroyevich
,
D.
, and
Burgos
,
R.
,
2010
, “
Experimental Parametric Study of the Parasitic Inductance Influence on MOSFET Switching Characteristics
,” Proceedings of the International Power Electronics Conference (
IPEC
), Sapporo, Japan, June 21–24, pp.
164
169
.10.1109/IP EC.2010.5543851
9.
Yuan
,
L.
,
Yu
,
H.
,
Wang
,
X.
, and
Zhao
,
Z.
,
2011
, “
Design, Simulation and Analysis of the Low Stray Inductance Bus Bar for Voltage Source Inverters
,”
Proceedings of the International Conference on Electrical Machines and Systems
, Beijing, China, Aug. 20–23, pp.
1
5
.10.1109/ICEMS.2011.6073842
10.
Reichl
,
J.
,
Ortiz-Rodriguez
,
J. M.
,
Hefner
,
A.
, and
Lai
,
J.-S.
,
2015
, “
3-D Thermal Component Model for Electrothermal Analysis of Multichip Power Modules With Experimental Validation
,”
IEEE Trans. Power Electron.
,
30
(
6
), pp.
3300
3308
.10.1109/TPEL.2014.2338278
11.
Qi
,
J.
,
Yang
,
X.
,
Li
,
X.
,
Tian
,
K.
,
Mao
,
Z.
,
Yang
,
S.
, and
Song
,
W.
,
2019
, “
Temperature Dependence of Dynamic Performance Characterization of 1.2-kV SiC Power MOSFETS Compared With Si IGBTs for Wide Temperature Applications
,”
IEEE Trans. Power Electron.
,
34
(
9
), pp.
9105
9117
.10.1109/TPEL.2018.2884966
12.
Cheng
,
H.-C.
,
Shen
,
Y.-H.
, and
Chen
,
W.-H.
,
2020
, “
Parasitic Extraction and Power Loss Estimation of Power Devices
,”
J. Mech.
,
37
, pp.
134
148
.10.1093/jom/ufaa022
13.
Kibushi
,
K.
,
Hatakeyama
,
T.
,
Nakagawa
,
S.
, and
Ishizuka
,
M.
,
2013
, “
Analysis of Heat Generation From a Power Si MOSFET
,”
Trans. Jpn. Inst. Electron. Packag.
,
6
(
1
), pp.
51
56
.10.5104/jiepeng.6.51
14.
Wei
,
Z.
,
Zhao
,
J.
, and
Xiong
,
B.
,
2014
, “
Dynamic Electro-Thermal Modeling of All-Vanadium Redox Flow Battery With Forced Cooling Strategies
,”
Appl. Energy
,
135
, pp.
1
10
.10.1016/j.apenergy.2014.08.062
15.
Patel
,
A.
,
Chandwani
,
H.
,
Patel
,
V.
, and
Patel
,
K.
,
2014
, “
Prediction of IGBT Power Losses and Junction Temperature in 160 kW VVVF Inverter Drive
,”
J. Electron. Electr. Eng.
,
14
, pp.
1
7
.https://scholar.google.com/scholar?as_q=Prediction+Of+Igbt+Power+Losses+And+Junction+temperature+In+160kw+VvvfInverter+Drive&as_occt=title&hl=en&as_sdt=0%2C31
16.
Wang
,
H.
,
Tang
,
G.
,
He
,
Z.
, and
Cao
,
J.
,
2015
, “
Power Loss and Junction Temperature Analysis in the Modular Multilevel Converters for HVDC Transmission Systems
,”
J. Power Electron.
,
15
(
3
), pp.
685
694
.10.6113/JPE.2015.15.3.685
17.
Oh
,
S. K.
,
Lundh
,
J. S.
,
Shervin
,
S.
,
Chatterjee
,
B.
,
Lee
,
D. K.
,
Choi
,
S.
,
Kwak
,
J. S.
, and
Ryou
,
J.
,
2019
, “
Thermal Management and Characterization of High-Power Wide-Bandgap Semiconductor Electronic and Photonic Devices in Automotive Applications
,”
ASME J. Electron. Packag.
,
141
(
2
), p.
020801
.10.1115/1.4041813
18.
Cheng
,
H.-C.
,
Wu
,
C.-H.
, and
Lin
,
S.-Y.
,
2019
, “
Thermal and Electrical Characterization of Power MOSFET Module Using Coupled Field Analysis
,”
J. Mech.
,
35
(
5
), pp.
641
655
.10.1017/jmech.2019.19
19.
Hu
,
Z.
,
Zhang
,
W.
, and
Wu
,
J.
,
2019
, “
An Improved Electro-Thermal Model to Estimate the Junction Temperature of IGBT Module
,”
Electronics
,
8
(
10
), p.
1066
.10.3390/electronics8101066
20.
Li
,
X.
,
Li
,
D.
,
Qi
,
F.
,
Packwood
,
M.
,
Luo
,
H.
,
Wang
,
Y.
,
Dai
,
X.
,
Luo
,
H.
, and
Liu
,
G.
,
2019
, “
EM-Electrothermal Analysis of Semiconductor Power Modules
,”
IEEE Trans. Compon. Packag. Manuf. Technol.
,
9
(
8
), pp.
1495
1503
.10.1109/TCPMT.2019.2923256
21.
Cheng
,
H.-C.
,
Lin
,
S.-Y.
, and
Liu
,
Y.-C.
,
2021
, “
Transient Electro-Thermal Coupled Modeling of Three-Phase Power MOSFET Inverter During Load Cycles
,”
Materials
,
14
(
18
), p.
5427
.10.3390/ma14185427
22.
Shammas
,
N. Y. A.
,
Rodriguez
,
M.
, and
Masana
,
F.
,
2002
, “
A Simple Method for Evaluating the Transient Thermal Response of Semiconductor Devices
,”
Microelectron. Reliab.
,
42
(
1
), pp.
109
117
.10.1016/S0026-2714(01)00229-3
23.
Akbari
,
M.
,
Bina
,
M. T.
,
Bahman
,
A. S.
,
Eskandari
,
B.
,
Pouresmaeil
,
E.
, and
Blaabjerg
,
F.
,
2021
, “
An Extended Multilayer Thermal Model for Multichip IGBT Modules Considering Thermal Aging
,”
IEEE Access
,
9
, pp.
84217
84230
.10.1109/ACCESS.2021.3083063
24.
Chatzipanagiotou
,
P.
,
Strakowska
,
M.
,
De Mey
,
G.
,
Chatziathanasiou
,
V.
,
Wiecek
,
B.
, and
Kopec
,
M.
,
2017
, “
A New Software Tool for Transient Thermal Analysis Based on Fast IR Camera Temperature Measurement
,”
Meas. Autom. Monit.
,
63
(
2
), pp.
48
51
.https://bibliotekanauki.pl/articles/114612
25.
Shankaran
,
G. V.
,
Dogruoz
,
M. B.
, and
Abarham
,
M.
,
2021
, “
Thermal Analysis and Design of Electronics Systems Across Scales Using State-Space Modeling Technique
,”
IEEE Trans. Compon. Packag. Manuf. Technol.
,
11
(
8
), pp.
1223
1234
.10.1109/TCPMT.2021.3089982
26.
Hu
,
B.
,
Sathiakumar
,
S.
, and
Shrivastava
,
Y.
,
2009
, “
180-Degree Commutation System of Permanent Magnet Brushless DC Motor Drive Based on Speed and Current Control
,”
Second International Conference on Intelligent Computation Technology and Automation
, Changsha, China, Oct. 10–11, pp.
723
726
.10.1109/ICICTA.2009.180
27.
Al-Naseem
,
O.
,
Erickson
,
R. W.
, and
Carlin
,
P.
,
2000
, “
Prediction of Switching Loss Variations by Averaged Switch Modeling
,” Fifteenth Annual IEEE Applied Power Electronics Conference and Exposition, APEC (
Cat. No. 00CH37058
), New Orleans, LA, Feb. 6–10, pp.
242
248
.10.1109/AP EC.2000.826111
28.
Inan
,
A. S.
, and
Inan
,
U. S.
,
1998
,
Engineering Electromagnetics
,
Pearson Education
,
India
.
29.
ANSYS Inc
.,
2020
, “
ANSYS Icepak User's Guide
,”
ANSYS, Inc
.,
Canonsburg, PA
.
30.
Cheng
,
H.-C.
,
Lin
,
J.-Y.
, and
Chen
,
W.-H.
,
2012
, “
On the Thermal Characterization of an RGB LED-Based White Light Module
,”
Appl. Therm. Eng.
,
38
(
2
), pp.
105
116
.10.1016/j.applthermaleng.2012.01.014
31.
ANSYS Inc
.,
2020
, “
Getting Started With Q3D Extractor
,”
ANSYS, Inc
.,
Canonsburg, PA
.
32.
ANSYS Inc
.,
2020
, “
SIMPLORER Getting Started Guide
,”
ANSYS, Inc
.,
Canonsburg, PA
.
You do not currently have access to this content.