Abstract

Printed electronics is a fastest growing and emerging technology that have shown much potential in several industries including automotive, wearables, healthcare, and aerospace. Its applications can be found not only in flexible but also in large area electronics. The technology provides an effective and convenient method to additively deposit conductive and insulating materials on any type of substrate. Despite its status, it is not without its challenges. Inkjet technology has gained much attention due to its low cost, low-material consumption, and capability for mass manufacturing. The preferred conductive metal of choice has been mostly silver due to its excellent electrical properties and ease in sintering. However, silver comes to be expensive than its counterpart copper. Since copper is prone to oxidation, much focus has been given toward photonic sintering that involves sudden burst of pulsed light at certain energy to sinter the copper nanoparticles. With this technique, only the printed material gets sintered in a matter of seconds without having a great impact on its substrate. With all the knowledge, there is still a large gap in the process side with copper where it is important to look how the print process affects the electrical and mechanical properties of copper. With the process developed, the resistivity of printed copper was found to be five times the bulk copper. In regards to adhesion to the polyimide film, mechanical shear load to failure was found to be within 15–20 gF. To demonstrate the complete process, commercial-off-the-shelf components are also mounted on the additively printed pads. Statistically, control charting technique is implemented to understand any process variation over long duration of prints.

References

1.
Zhang
,
Y.
,
Liu
,
C.
, and
Whalley
,
D.
,
2009
, “
Direct-Write Techniques for Maskless Production of Microelectronics: A Review of Current State-of-the-Art Technologies
,”
2009 International Conference on Electronic Packaging Technology & High Density Packaging
,
IEEE
,
Beijing, China
, Aug. 10–13, pp.
497
503
.10.1109/ICEPT.2009.5270702
2.
Cummins
,
G.
, and
Desmulliez
,
M. P.
,
2012
, “
Inkjet Printing of Conductive Materials: A Review
,”
Circuit World.
,
38
(
4
), pp.
193
213
.10.1108/03056121211280413
3.
Wilkinson
,
N. J.
,
Smith
,
M. A. A.
,
Kay
,
R. W.
, and
Harris
,
R. A.
,
2019
, “
A Review of Aerosol Jet Printing—a Non-Traditional Hybrid Process for Micro-Manufacturing
,”
Int. J. Adv. Manuf. Technol.
,
105
(
11
), pp.
4599
4619
.10.1007/s00170-019-03438-2
4.
Beedasy
,
V.
, and
Smith
,
P. J.
,
2020
, “
Printed Electronics as Prepared by Inkjet Printing
,”
Materials
,
13
(
3
), p.
704
.10.3390/ma13030704
5.
Lall
,
P.
,
Goyal
,
K.
, and
Miller
,
S.
,
2020
, “
Process-Consistency in Additive Printed Multilayer Substrates With Offset-Vias Using Aerosol Jet Technology
,”
ASME
Paper No. IPACK2020-2680.10.1115/IPACK2020-2680
6.
Lall
,
P.
,
Goyal
,
K.
,
Kothari
,
N.
,
Leever
,
B.
, and
Miller
,
S.
,
2020
, “
Additively Printed Multilayer Substrate Using Aerosol-Jet Technique
,”
ASME J. Electron. Packaging
,
142
(
4
), p.
041110
.10.1115/1.4047473
7.
Kosmala
,
A.
,
Wright
,
R.
,
Zhang
,
Q.
, and
Kirby
,
P.
,
2011
, “
Synthesis of Silver Nano Particles and Fabrication of Aqueous Ag Inks for Inkjet Printing
,”
Mater. Chem. Phys.
,
129
(
3
), pp.
1075
1080
.10.1016/j.matchemphys.2011.05.064
8.
Valeton
,
J. J. P.
,
Hermans
,
K.
,
Bastiaansen
,
C. W. M.
,
Broer
,
D. J.
,
Perelaer
,
J.
,
Schubert
,
U. S.
,
Crawford
,
G. P.
, and
Smith
,
P. J.
,
2010
, “
Room Temperature Preparation of Conductive Silver Features Using Spin-Coating and Inkjet Printing
,”
J. Mater. Chem.
,
20
(
3
), pp.
543
546
.10.1039/B917266A
9.
Ryu
,
B. H.
,
Choi
,
Y.
,
Park
,
H. S.
,
Byun
,
J. H.
,
Kong
,
K.
,
Lee
,
J. O.
, and
Chang
,
H.
,
2005
, “
Synthesis of Highly Concentrated Silver Nanosol and Its Application to Inkjet Printing
,”
Colloids Surf. A Physicochem. Eng. Asp.
,
270
, pp.
345
351
.10.1016/j.colsurfa.2005.09.005
10.
Nie
,
X.
,
Wang
,
H.
, and
Zou
,
J.
,
2012
, “
Inkjet Printing of Silver Citrate Conductive Ink on PET Substrate
,”
Appl. Surf. Sci.
,
261
, pp.
554
560
.10.1016/j.apsusc.2012.08.054
11.
Perelaer
,
J.
,
Hendriks
,
C. E.
,
de Laat
,
A. W.
, and
Schubert
,
U. S.
,
2009
, “
One-Step Inkjet Printing of Conductive Silver Tracks on Polymer Substrates
,”
Nanotechnology
,
20
(
16
), p.
165303
.10.1088/0957-4484/20/16/165303
12.
Perelaer
,
J.
,
De Laat
,
A. W.
,
Hendriks
,
C. E.
, and
Schubert
,
U. S.
,
2008
, “
Inkjet-Printed Silver Tracks: Low Temperature Curing and Thermal Stability Investigation
,”
J. Mater. Chem.
,
18
(
27
), pp.
3209
3215
.10.1039/b720032c
13.
Finn
,
D. J.
,
Lotya
,
M.
, and
Coleman
,
J. N.
,
2015
, “
Inkjet Printing of Silver Nanowire Networks
,”
ACS Appl. Mater. Interfaces
,
7
(
17
), pp.
9254
9261
.10.1021/acsami.5b01875
14.
Dang
,
M. C.
,
Dang
,
T. M. D.
, and
Fribourg-Blanc
,
E.
,
2014
, “
Silver Nanoparticles Ink Synthesis for Conductive Patterns Fabrication Using Inkjet Printing Technology
,”
Adv. Natural Sci. Nanosci. Nanotechnol.
,
6
(
1
), p.
015003
.10.1088/2043-6262/6/1/015003
15.
Lall
,
P.
,
Goyal
,
K.
,
Schulze
,
K.
, and
Miller
,
S.
,
2021
, “
Electrically Conductive Adhesive Interconnections on Additively Printed Substrates
,”
IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems
,
IEEE
,
San Diego, CA
, June 1–4, pp.
807
817
.10.1109/ITherm51669.2021.9503235
16.
Lall
,
P.
,
Goyal
,
K.
,
Schulze
,
K.
, and
Miller
,
S.
,
2021
, “
Low Temperature Solder Interconnection of Surface Mount Devices With Additively Printed Pads on Flexible Substrate
,”
IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems
,
IEEE
,
San Diego, CA
, June 1–4, pp.
972
981
.10.1109/ITherm51669.2021.9503253
17.
Li
,
D.
,
Sutton
,
D.
,
Burgess
,
A.
,
Graham
,
D.
, and
Calvert
,
P. D.
,
2009
, “
Conductive Copper and Nickel Lines Via Reactive Inkjet Printing
,”
J. Mater. Chem.
,
19
(
22
), pp.
3719
3724
.10.1039/b820459d
18.
Tortorich
,
R. P.
, and
Choi
,
J. W.
,
2013
, “
Inkjet Printing of Carbon Nanotubes
,”
Nanomaterials
,
3
(
3
), pp.
453
468
.10.3390/nano3030453
19.
Secor
,
E. B.
,
Prabhumirashi
,
P. L.
,
Puntambekar
,
K.
,
Geier
,
M. L.
, and
Hersam
,
M. C.
,
2013
, “
Inkjet Printing of High Conductivity, Flexible Graphene Patterns
,”
J. Phys. Chem. Lett.
,
4
(
8
), pp.
1347
1351
.10.1021/jz400644c
20.
Aslam
,
M.
,
Gopakumar
,
G.
,
Shoba
,
T. L.
,
Mulla
,
I. S.
,
Vijayamohanan
,
K.
,
Kulkarni
,
S. K.
,
Urban
,
J.
, and
Vogel
,
W.
,
2002
, “
Formation of Cu and Cu2O Nanoparticles by Variation of the Surface Ligand: Preparation, Structure, and Insulating-to-Metallic Transition
,”
J. Colloid Interface Sci.
,
255
(
1
), pp.
79
90
.10.1006/jcis.2002.8558
21.
Qi
,
L.
,
Ma
,
J.
, and
Shen
,
J.
,
1997
, “
Synthesis of Copper Nanoparticles in Nonionic Water-in-Oil Microemulsions
,”
J. Colloid Interface Sci.
,
186
(
2
), pp.
498
500
.10.1006/jcis.1996.4647
22.
Lee
,
Y.
,
Choi
,
J. R.
,
Lee
,
K. J.
,
Stott
,
N. E.
, and
Kim
,
D.
,
2008
, “
Large-Scale Synthesis of Copper Nanoparticles by Chemically Controlled Reduction for Applications of Inkjet-Printed Electronics
,”
Nanotechnology
,
19
(
41
), p.
415604
.10.1088/0957-4484/19/41/415604
23.
Kang
,
J. S.
,
Kim
,
H. S.
,
Ryu
,
J.
,
Hahn
,
H. T.
,
Jang
,
S.
, and
Joung
,
J. W.
,
2010
, “
Inkjet Printed Electronics Using Copper Nanoparticle Ink
,”
J. Mater. Sci. Mater. Electron.
,
21
(
11
), pp.
1213
1220
.10.1007/s10854-009-0049-3
24.
Albrecht
,
A.
,
Rivadeneyra
,
A.
,
Abdellah
,
A.
,
Lugli
,
P.
, and
Salmerón
,
J. F.
,
2016
, “
Inkjet Printing and Photonic Sintering of Silver and Copper Oxide Nanoparticles for Ultra-Low-Cost Conductive Patterns
,”
J. Mater. Chem. C
,
4
(
16
), pp.
3546
3554
.10.1039/C6TC00628K
25.
Kang
,
H.
,
Sowade
,
E.
, and
Baumann
,
R. R.
,
2014
, “
Direct Intense Pulsed Light Sintering of Inkjet-Printed Copper Oxide Layers Within Six Milliseconds
,”
ACS Appl. Mater. Interfaces
,
6
(
3
), pp.
1682
1687
.10.1021/am404581b
26.
Takeuchi
,
Y.
,
Takeuchi
,
H.
,
Komatsu
,
K.
, and
Nishi
,
S.
,
2005
, “
Improvement of Drive Energy Efficiency in a Shear Mode Piezo-Inkjet Head
,” Konica Minolta Technology Report (Konica Minolta Technol Rep), Volume 2, pp.
89
92
.https://www.konicaminolta.com/inkjet/technology/report/pdf/tech_200502_head_eng.pdf
You do not currently have access to this content.