Abstract

Due to the complex structure and thermal mismatch of coaxial through silicon via (TSV), cracks easily occur under thermal load, leading to interface delamination or spalling failure. The reliability issue of coaxial TSV is important for its application in three-dimensional packaging, so it is of great significance to predict the crack trend and evaluate the reliability of coaxial TSV. In this paper, an algorithm model with the combination of whale optimization algorithm (WOA) and back propagation (BP) neural network for the reliability prediction of coaxial TSV is proposed. Based on finite element method (FEM), the training and validation datasets of the energy release rates (ERR) of the crack at the critical interface are calculated to construct the deep learning neural network. Six key structure parameters affecting the reliability of coaxial TSV are selected as the input values of the BP neural network. The maximum relative error of whale optimization algorithm optimized back propagation (WOA-BP) neural network model is 0.88%, which is better than the prediction results of the traditional BP and genetic algorithm (GA) optimized BP models. The WOA-BP neural network model was also compared with BP and GA-BP neural network models with four error metric models. It is verified that WOA-BP neural network model has the best prediction performance. The proposed model can be used to achieve improved prediction accuracy for the interface reliability of coaxial TSV under complex structural conditions since it has higher accuracy and stronger robustness.

Graphical Abstract Figure

The Schematic Diagram of Coaxial TSV Structure

Graphical Abstract Figure

The Schematic Diagram of Coaxial TSV Structure

Close modal

References

1.
Lau
,
J. H. H.
,
2023
, “
Recent Advances and Trends in Multiple System and Heterogeneous Integration With TSV Interposers
,”
IEEE Trans. Compon., Packag., Manuf. Technol.
,
13
(
1
), pp.
3
25
.10.1109/TCPMT.2023.3234007
2.
Beyne
,
E.
,
2011
, “
Through-Silicon Via Technology for 3D IC
,”
Ultra-Thin Chip Technology and Applications
,
J.
Burghartz
, ed.,
Springer
,
New York
, pp.
93
108
.
3.
Zhao
,
H.
,
Chen
,
M.
,
Peng
,
Y.
,
Wang
,
Q.
,
Kang
,
M.
, and
Cao
,
L.
,
2022
, “
TXV Technology: The Cornerstone of 3D System-in-Packaging
,”
Sci. China: Technol. Sci.
,
65
(
9
), pp.
2031
2050
.10.1007/s11431-022-2119-3
4.
Lau
,
J. H.
,
2014
, “
Overview and Outlook of Three-Dimensional Integrated Circuit Packaging, Three-Dimensional Si Integration, and Three-Dimensional Integrated Circuit Integration
,”
ASME J. Electron. Packag.
,
136
(
4
), p.
040801
.10.1115/1.4028629
5.
Feng
,
W.
,
Watanabe
,
N.
,
Shimamoto
,
H.
,
Aoyagi
,
M.
, and
Kikuchi
,
K.
,
2019
, “
Stress Investigation of Annular-Trench-Isolated TSV by Polarized Raman Spectroscopy Measurement and Finite Element Simulation
,”
Microelectron. Reliab.
,
99
(
6
), pp.
125
131
.10.1016/j.microrel.2019.05.021
6.
Majd
,
A. E.
,
Jeong
,
I. H.
,
Jung
,
J. P.
, and
Ekere
,
N. N.
,
2021
, “
Cu Protrusion of Different Through-Silicon Via Shapes Under Annealing Process
,”
J. Mater. Eng. Perform.
,
30
(
6
), pp.
4712
4720
.10.1007/s11665-021-05775-4
7.
Yu
,
P.
,
Lin
,
H.
,
He
,
Z.
,
Song
,
C.
,
Cai
,
J.
,
Wang
,
Q.
, and
Wang
,
Z.
,
2020
, “
Coaxial Through-Silicon-Vias Using Low-κ SiO2 Insulator
,” 2020 IEEE 70th Electronic Components and Technology Conference (
ECTC
), Orlando, FL, June 3–30, pp.
1167
1172
.10.1109/ECTC32862.2020.00187
8.
Qian
,
L.
,
Xia
,
Y.
,
He
,
X.
,
Qian
,
K.
, and
Wang
,
J.
,
2018
, “
Electrical Modeling and Characterization of Silicon-Core Coaxial Through-Silicon Vias in 3-D Integration
,”
IEEE Trans. Compon., Packag., Manuf. Technol.
,
8
(
8
), pp.
1336
1343
.10.1109/TCPMT.2018.2854829
9.
Qian
,
L.
,
He
,
X.
,
Qian
,
K.
, and
Xia
,
Y.
,
2018
, “
Study of Silicon Core Coaxial Through Silicon Via for Three Dimensional Integration
,” 2018 IEEE International Symposium on Circuits and Systems (
ISCAS
), Florence, Italy, May 27–30, pp.
1
4
.10.1109/ISCAS.2018.8350903
10.
Yang
,
Y.
,
Zheng
,
J.
,
Dong
,
G.
,
Zhao
,
Y.
,
Mei
,
Z.
, and
Zhu
,
W.
,
2016
, “
New Coaxial Through Silicon Via (TSV) Applied for Three Dimensional Integrated Circuits (3D ICs)
,”
IEICE Electron. Express
,
13
(
8
), pp.
20160192
20160192
.10.1587/elex.13.20160192
11.
Ryu
,
S.-K.
,
Lu
,
K.-H.
,
Zhang
,
X.
,
Im
,
J.-H.
,
Ho
,
P. S.
, and
Huang
,
R.
,
2011
, “
Impact of Near-Surface Thermal Stresses on Interfacial Reliability of Through-Silicon Vias for 3-D Interconnects
,”
IEEE Trans. Device Mater. Reliab.
,
11
(
1
), pp.
35
43
.10.1109/TDMR.2010.2068572
12.
Lu
,
K.-H.
,
Ryu
,
S.-K.
,
Im
,
J.
,
Huang
,
R.
, and
Ho
,
P. S.
,
2011
, “
Thermomechanical Reliability of Through-Silicon Vias in 3D Interconnects
,”
2011 International Reliability Physics Symposium
, Monterey, CA, Apr. 10–14, pp.
3D.1.1
3D.1.7
.10.1109/IRPS.2011.5784487
13.
Fan
,
Z.
,
Chen
,
X.
,
Jiang
,
Y.
,
Li
,
X.
,
Zhang
,
S.
, and
Wang
,
Y.
,
2022
, “
Effects of Multi-Cracks and Thermal-Mechanical Coupled Load on the TSV Reliability
,”
Microelectron. Reliab.
,
131
, p.
114499
.10.1016/j.microrel.2022.114499
14.
Fan
,
Z.
,
Liu
,
Y.
,
Chen
,
X.
,
Jiang
,
Y.
,
Zhang
,
S.
, and
Wang
,
Y.
,
2020
, “
Research on Fatigue of TSV-Cu Under Thermal and Vibration Coupled Load Based on Numerical Analysis
,”
Microelectron. Reliab.
,
106
, p.
113590
.10.1016/j.microrel.2020.113590
15.
Dai
,
Y.
,
Zhang
,
M.
,
Qin
,
F.
,
Chen
,
P.
, and
An
,
T.
,
2019
, “
Effect of Silicon Anisotropy on Interfacial Fracture for Three Dimensional Through-Silicon-Via (TSV) Under Thermal Loading
,”
Eng. Fract. Mech.
,
209
, pp.
274
300
.10.1016/j.engfracmech.2019.01.030
16.
Dou
,
H.
,
Yang
,
M.
,
Chen
,
Y.
, and
Qiao
,
Y.
,
2017
, “
Analysis of the Structure Evolution and Crack Propagation of Cu-Filled TSV After Thermal Shock Test
,” 2017 18th International Conference on Electronic Packaging Technology (
ICEPT
), Harbin, China, Aug. 16–19, pp.
611
614
.10.1109/ICEPT.2017.8046528
17.
Hwang
,
J.-S.
,
Seo
,
S.-H.
, and
Lee
,
W.-J.
,
2016
, “
Effect of Design Parameters on Thermomechanical Stress in Silicon of Through-Silicon Via
,”
ASME J. Electron. Packag.
,
138
(
3
), p.
031006
.10.1115/1.4033923
18.
Li
,
W.
,
Liu
,
Z.
,
Qian
,
W.
,
Wang
,
Z.
,
Wang
,
W.
,
Zhao
,
Y.
, and
Zhang
,
X.
,
2022
, “
Modeling of the RF Coaxial TSV Configuration Inside the Silicon Interposer With Embedded Cooling Cavity
,”
IEEE Trans. Compon., Packag., Manuf. Technol.
,
12
(
1
), pp.
3
10
.10.1109/TCPMT.2021.3135558
19.
Wang
,
F.
, and
Yu
,
N.
,
2015
, “
Study on Thermal Stress and Keep-Out Zone Induced by Cu and SiO2 Filled Coaxial-Annular Through-Silicon Via
,”
IEICE Electron. Express
,
12
(
22
), pp.
20150844
20150844
.10.1587/elex.12.20150844
20.
Zhao
,
J.
,
Ge
,
M.
,
Song
,
C.
,
Sun
,
L.
, and
Sun
,
H.
,
2019
, “
A Novel 3D Encapsulation Structure Based on Subwavelength Structure and Inserted Pyrex Glass for RF MEMS Infrared Detectors
,”
Electronics
,
8
(
9
), p.
974
.10.3390/electronics8090974
21.
Wang
,
F.
,
Zhu
,
Z.
,
Yang
,
Y.
,
Liu
,
X.
, and
Ding
,
R.
,
2013
, “
Thermo-Mechanical Performance of Cu and SiO2 Filled Coaxial Through-Silicon-Via (TSV)
,”
IEICE Electron. Express
,
10
(
24
), pp.
20130894
20130894
.10.1587/elex.10.20130894
22.
Wang
,
N.
,
Yang
,
J.
,
Ding
,
C.
,
Jia
,
H.-Z.
, and
Zhai
,
J.-H.
,
2022
, “
Symmetrical Multilayer Dielectric Model of Thermal Stress and Strain of Silicon-Core Coaxial Through-Silicon Vias in 3-D Integrated Circuit
,”
IEEE Trans. Compon., Packag., Manuf. Technol.
,
12
(
7
), pp.
1122
1129
.10.1109/TCPMT.2022.3186969
23.
Segovia-Fernandez
,
J.
,
Suzuki
,
Y.
,
Chowdhury
,
M.
,
Rojas
,
J.
, and
Yen
,
E. T.-T.
,
2022
, “
A Thermal-Stress FEM to Predict Aging in Packaged MEMS Resonators
,” 2022 Joint Conference of the European Frequency and Time Forum and IEEE International Frequency Control Symposium (
EFTF/IFCS
),
Paris, France, Apr. 24–28, pp.
1
3
.10.1109/EFTF/IFCS54560.2022.9850808
24.
Kim
,
J.
,
Kim
,
K.
,
Lee
,
E.
,
Hong
,
S.
,
Shin
,
J.
,
Lee
,
M.
,
Lee
,
J. H.
,
Hiner
,
D.
, and
Do
,
W.
,
2020
, “
Hybrid 3D Package With RDL and Laminate Substrate for Ultra-Thin and High-Bandwidth Applications
,” 2020 IEEE 22ND Electronics Packaging Technology Conference (
EPTC
),
Singapore, Dec. 2–4, pp.
1
5
.10.1109/EPTC50525.2020.9315082
25.
Feng
,
W.
,
Kikuchi
,
K.
,
Hidaka
,
M.
,
Yamamori
,
H.
,
Araga
,
Y.
,
Makise
,
K.
, and
Kawabata
,
S.
,
2021
, “
Investigation of Heat Transfer in 3D Packaging for Practical-Scale Quantum Annealing Machines
,” 2021 International Conference on Electronics Packaging (
ICEP 2021
), Tokyo, Japan, May 12–14, pp.
163
164
.10.23919/ICEP51988.2021.9451978
26.
Chen
,
D.
,
Yang
,
Y.
,
Wang
,
X.
,
Li
,
D.
,
Liang
,
Y.
, and
Xu
,
C.
,
2023
, “
Thermal-Stress Coupling Optimization for Coaxial Through Silicon Via
,”
Symmetry
,
15
(
2
), p.
264
.10.3390/sym15020264
27.
Chu
,
W.
,
Ho
,
P. S.
, and
Li
,
W.
,
2021
, “
An Adaptive Machine Learning Method Based on Finite Element Analysis for Ultra Low-k Chip Package Design
,”
IEEE Trans. Compon., Packag., Manuf. Technol.
,
11
(
9
), pp.
1435
1441
.10.1109/TCPMT.2021.3102891
28.
Yuan
,
C. C. A.
, and
Lee
,
C.-C.
,
2020
, “
Solder Joint Reliability Modeling by Sequential Artificial Neural Network for Glass Wafer Level Chip Scale Package
,”
IEEE Access
,
8
, pp.
143494
143501
.10.1109/ACCESS.2020.3014156
29.
Liu
,
Y.
,
Dai
,
J.
,
Zhao
,
S.
,
Zhang
,
J.
,
Li
,
T.
,
Shang
,
W.
,
Zheng
,
Y.
, and
Wang
,
Z.
,
2020
, “
A Bidirectional Reflectance Distribution Function Model of Space Targets in Visible Spectrum Based on GA-BP Network
,”
Appl. Phys. B
,
126
(
6
), pp.
1
9
.10.1007/s00340-020-07455-y
30.
Bai
,
H.
,
Chu
,
Z.
,
Wang
,
D.
,
Bao
,
Y.
,
Qin
,
L.
,
Zheng
,
Y.
, and
Li
,
F.
, “
Predictive Control of Microwave Hot-Air Coupled Drying Model Based on GWO-BP Neural Network
,”
Drying Technol.
,
41
(
7
), pp.
1148
1158
.10.1080/07373937.2022.2124262
31.
Hu
,
J.
,
Bi
,
J.
,
Liu
,
H.
,
Li
,
Y.
,
Ao
,
S.
, and
Luo
,
Z.
,
2022
, “
Prediction of Resistance Spot Welding Quality Based on BPNN Optimized by Improved Sparrow Search Algorithm
,”
Materials
,
15
(
20
), p.
7323
.10.3390/ma15207323
32.
Yang
,
C.
,
Zhang
,
L.
,
Yang
,
H.
,
Huang
,
H.
, and
Cao
,
L.
,
2023
, “
Research on the Interface Delamination Failure of Coaxial Through Silicon Via Subjected to Thermal Stress
,”
Semicond. Technol.
,
48
(
1
), pp.
73
79
.
33.
Mercado
,
L. L.
,
Goldberg
,
C.
,
Kuo
,
S.-M.
,
Lee
,
T.
, and
Pozder
,
S. K.
,
2003
, “
Analysis of Flip-Chip Packaging Challenges on Copper/Low-k Interconnects
,”
IEEE Trans. Device Mater. Reliab.
,
3
(
4
), pp.
111
118
.10.1109/TDMR.2003.821541
34.
Krueger
,
R.
,
2004
, “
Virtual Crack Closure Technique: History, Approach, and Applications
,”
ASME Appl. Mech. Rev.
,
57
(
2
), pp.
109
143
.10.1115/1.1595677
35.
Hecht-Nielsen
,
R.
,
1992
, “
III.3 - Theory of the Backpropagation Neural Network**Based on ‘Nonindent’ by Robert Hecht-Nielsen, Which Appeared in Proceedings of the International Joint Conference on Neural Networks 1, 593–611, June 1989. © 1989 IEEE
,”
Neural Networks for Perception
,
H.
Wechsler
, ed.,
Academic Press
, Cambridge, MA, pp.
65
93
.
36.
Xiao
,
R.
,
Zhuang
,
Q.
,
Jin
,
S.
, and
Jin
,
W.
,
2022
, “
Prediction Model of Wax Deposition Rate Based on WOA- BPNN Algorithm
,” Front. Heat Mass Transfer (
FHMT
),
18
(
8
), pp.
1
7
.10.5098/hmt.18.8
37.
Mirjalili
,
S.
, and
Lewis
,
A.
,
2016
, “
The Whale Optimization Algorithm
,”
Adv. Eng. Software
,
95
, pp.
51
67
.10.1016/j.advengsoft.2016.01.008
You do not currently have access to this content.