Abstract

To meet the requirements of high-precision motion control for optoelectronic packaging platforms, we propose an improved particle swarm optimization (PSO) and backpropagation (IPSO-BP) neural network for solving the forward kinematics problem (FKP) of platforms. The focus of this paper is the 6-pss flexible parallel platform commonly used in optoelectronic packaging. First, a platform inverse kinematics problem (IKP) based on a flexibility matrix is solved using geometric and vector analysis. The conventional PSO-BP network is then optimized utilizing uniform design (UD), a random learning strategy, and space reduction techniques in FKP. Finally, simulations and experiments demonstrate that the proposed IPSO-BP network for solving the FKP on high-precision optoelectronic packaging platforms is feasible. Compared to BP and PSO-BP, this network has a higher resolution, faster convergence speed, and error control at the submicron level, which satisfies the motion control requirements of the platform at the micron level. This study lays a solid foundation for the production of high-quality devices in optoelectronic packaging.

References

1.
Fan
,
B. J.
,
Zhao
,
X.
,
Zhang
,
J.
,
Sun
,
Y.
,
Yang
,
H.
,
Guo
,
L. J.
, and
Zhou
,
S.
,
2023
, “
Monolithically Integrating III-Nitride Quantum Structure for Full-Spectrum White LED Via Bandgap Engineering Heteroepitaxial Growth
,”
Laser Photonics Rev.
,
17
, p.
2200455
.10.1002/lpor.202200455
2.
Zhou
,
S.
,
Zhao
,
X.
,
Du
,
P.
,
Zhang
,
Z.
,
Liu
,
X.
,
Liu
,
S.
, and
Guo
,
L. J.
,
2022
, “
Application of Patterned Sapphire Substrate for III-Nitride Light-Emitting Diodes
,”
Nanoscale
,
14
(
13
), pp.
4887
4907
.10.1039/D1NR08221C
3.
Zhou
,
S.
,
Liu
,
X.
,
Yan
,
H.
,
Chen
,
Z.
,
Liu
,
Y.
, and
Liu
,
S.
,
2019
, “
Highly Efficient GaN-Based High-Power Flip-Chip Light-Emitting Diodes
,”
Opt. Express
,
27
(
12
), pp.
A669
A692
.10.1364/OE.27.00A669
4.
Zhou
,
S.
,
Wan
,
Z.
,
Lei
,
Y.
,
Tang
,
B.
,
Tao
,
G.
,
Du
,
P.
, and
Zhao
,
X.
,
2022
, “
InGaN Quantum Well With Gradually Varying Indium Content for High-Efficiency GaN-Based Green Light-Emitting Diodes
,”
Opt. Lett.
,
47
(
5
), pp.
1291
1294
.10.1364/OL.452477
5.
Yaomin
,
L.
,
Eichele
,
C.
, and
Shi
,
F. G.
,
2005
, “
Effect of Welding Sequence on Welding-Induced-Alignment-Distortion in Packaging of Butterfly Laser Diode Modules: Simulation and Experiment
,”
J. Lightwave Technol.
,
23
(
2
), pp.
615
623
.10.1109/JLT.2004.841780
6.
Xu
,
H. W.
,
Zhou
,
H. B.
,
Tan
,
S. X.
,
Duan
,
J. A.
, and
Hou
,
F. L.
,
2021
, “
A Six-Degree-of-Freedom Compliant Parallel Platform for Optoelectronic Packaging
,”
IEEE Trans. Ind. Electron.
,
68
(
11
), pp.
11178
11187
.10.1109/TIE.2020.3036225
7.
Wang
,
Q.
,
Su
,
J.
,
Lv
,
Z.
,
Zhang
,
L.
,
Lin
,
H.
, and
Xu
,
G.
,
2017
, “
Efficient Hybrid Method for Forward Kinematics Analysis of Parallel Robots Based on Signal Decomposition and Reconstruction
,”
Adv. Mech. Eng.
,
9
(
5
), p.
168781401769909
.10.1177/1687814017699094
8.
Gonçalves
,
M. L. N.
, and
Oliveira
,
P. R.
,
2013
, “
Convergence of the Gauss–Newton Method for a Special Class of Systems of Equations Under a Majorant Condition
,”
Optimization
,
64
, pp.
1
18
.10.1080/02331934.2013.778854
9.
Merlet
,
J. P.
,
2004
, “
Solving the Forward Kinematics of a Gough-Type Parallel Manipulator With Interval Analysis
,”
Int. J. Rob. Res.
,
23
(
3
), pp.
221
235
.10.1177/0278364904039806
10.
Lee
,
T. Y.
, and
Shim
,
J. K.
,
2001
, “
Forward Kinematics of the General 6–6 Stewart Platform Using Algebraic Elimination
,”
Mech. Mach. Theory
,
36
(
9
), pp.
1073
1085
.10.1016/S0094-114X(01)00034-9
11.
Gan
,
D.
,
Liao
,
Q.
,
Dai
,
J. S.
,
Wei
,
S.
, and
Seneviratne
,
L. D.
,
2009
, “
Forward Displacement Analysis of the General 6–6 Stewart Mechanism Using Grbner Bases
,”
Mech. Mach. Theory
,
44
(
9
), pp.
1640
1647
.10.1016/j.mechmachtheory.2009.01.008
12.
Zhao
,
Z. Z.
,
Xu
,
Q. S.
, and
Jia
,
M. P.
,
2016
, “
Improved Shuffled Frog Leaping Algorithm-Based BP Neural Network and Its Application in Bearing Early Fault Diagnosis
,”
Neural Comput. Appl.
,
27
(
2
), pp.
375
385
.10.1007/s00521-015-1850-y
13.
Zhang
,
L.
,
Wang
,
F. L.
,
Sun
,
T.
, and
Xu
,
B.
,
2018
, “
A Constrained Optimization Method Based on BP Neural Network
,”
Neural Comput. Appl.
,
29
(
2
), pp.
413
421
.10.1007/s00521-016-2455-9
14.
Parikh
,
P. J.
, and
Lam
,
S. S.
,
2009
, “
Solving the Forward Kinematics Problem in Parallel Manipulators Using an Iterative Artificial Neural Network Strategy
,”
Int. J. Adv. Manuf. Technol.
,
40
(
5–6
), pp.
595
606
.10.1007/s00170-007-1360-x
15.
Zhu
,
Q.
, and
Zhang
,
Z.
,
2019
, “
An Efficient Numerical Method for Forward Kinematics of Parallel Robots
,”
IEEE Access
,
7
, pp.
128758
128766
.10.1109/ACCESS.2019.2940064
16.
Liu
,
C.
,
Cao
,
G.
, and
Qu
,
Y.
,
2019
, “
Safety Analysis Via Forward Kinematics of Delta Parallel Robot Using Machine Learning
,”
Saf. Sci.
,
117
, pp.
243
249
.10.1016/j.ssci.2019.04.013
17.
López
,
E. G.
,
Yu
,
W.
, and
Li
,
X.
,
2021
, “
Optimum Design of a Parallel Robot Using Neuro-Genetic Algorithm
,”
J. Mech. Sci. Technol.
,
35
(
1
), pp.
293
305
.10.1007/s12206-020-1229-6
18.
Lan
,
L.
,
Li
,
H.
,
Yang
,
W.
,
Qi
,
Z.
, and
Yonghqiao
,
W.
,
2020
, “
Kinematic of 4SPRR-SPR Parallel Robots Based on VQTAM
,”
Adv. Mech. Eng.
,
12
(
10
), p.
168781402096258
.10.1177/1687814020962587
19.
Rahmani
,
A.
, and
Ghanbari
,
A.
,
2015
, “
Application of Neural Network Training in Forward Kinematics Simulation for a Novel Modular Hybrid Manipulator With Experimental Validation
,”
Intell. Serv. Rob.
,
9
(
1
), pp.
79
91
.10.1007/s11370-015-0188-8
20.
Kang
,
R.
,
Chanal
,
H.
,
Bonnemains
,
T.
,
Pateloup
,
S.
,
Branson
,
D. T.
, III
, and
Ray
,
P.
,
2011
, “
Learning the Forward Kinematics Behavior of a Hybrid Robot Employing Artificial Neural Networks
,”
Robotica
,
30
(
5
), pp.
847
855
.10.1017/S026357471100107X
21.
Liu
,
G.
,
Wang
,
Y.
,
Zhang
,
Y.
, and
Xie
,
Z.
,
2015
, “
Real-Time Solution of the Forward Kinematics for a Parallel Haptic Device Using a Numerical Approach Based on Neural Networks
,”
J. Mech. Sci. Technol.
,
29
(
6
), pp.
2487
2499
.10.1007/s12206-015-0543-x
22.
Limtrakul
,
S.
, and
Arnonkijpanich
,
B.
,
2017
, “
Supervised Learning Based on the Self-Organizing Maps for Forward Kinematic Modeling of Stewart Platform
,”
Neural Comput. Appl.
,
31
(
2
), pp.
619
635
.10.1007/s00521-017-3095-4
23.
Dan
,
W.
, and
Rui
,
F.
,
2016
, “
Design and Nonlinear Analysis of a 6-DOF Compliant Parallel Manipulator With Spatial Beam Flexure Hinges
,”
Precis Eng.
,
45
, pp.
365
373
.10.1016/j.precisioneng.2016.03.013
24.
Shang
,
J.
,
Tian
,
Y.
,
Li
,
Z.
,
Wang
,
F.
, and
Cai
,
K.
,
2015
, “
A Novel Voice Coil Motor-Driven Compliant Micropositioning Stage Based on Flexure Mechanism
,”
Rev. Sci. Instrum.
,
86
(
9
), p.
095001
.10.1063/1.4929867
25.
Zhang
,
H.
,
Wang
,
Z.
, and
Liu
,
D.
,
2014
, “
A Comprehensive Review of Stability Analysis of Continuous-Time Recurrent Neural Networks
,”
IEEE Trans. Neural Networks Learn. Syst.
,
25
(
7
), pp.
1229
1262
.10.1109/TNNLS.2014.2317880
26.
Ren
,
C.
,
An
,
N.
,
Wang
,
J.
,
Li
,
L.
,
Hu
,
B.
, and
Shang
,
D.
,
2014
, “
Optimal Parameters Selection for BP Neural Network Based on Particle Swarm Optimization: A Case Study of Wind Speed Forecasting
,”
Knowl.-Based Syst.
,
56
, pp.
226
239
.10.1016/j.knosys.2013.11.015
27.
Li
,
S. J.
, and
Fan
,
Z. Y.
,
2022
, “
Evaluation of Urban Green Space Landscape Planning Scheme Based on PSO-BP Neural Network Model
,”
Alexandria Eng. J.
,
61
(
9
), pp.
7141
7153
.10.1016/j.aej.2021.12.057
28.
Mohamad
,
E. T.
,
Armaghani
,
D. J.
,
Momeni
,
E.
,
Yazdavar
,
A. H.
, and
Ebrahimi
,
M.
,
2018
, “
Rock Strength Estimation: A PSO-Based BP Approach
,”
Neural Comput. Appl.
,
30
(
5
), pp.
1635
1646
.10.1007/s00521-016-2728-3
29.
Chen
,
B. S.
,
Zhang
,
H. J.
, and
Li
,
M. S.
,
2019
, “
Prediction of pK(a) Values of Neutral and Alkaline Drugs With Particle Swarm Optimization Algorithm and Artificial Neural Network
,”
Neural Comput. Appl.
,
31
(
12
), pp.
8297
8304
.10.1007/s00521-018-3956-5
30.
Zhan
,
Z.-H.
,
Zhang
,
J.
,
Li
,
Y.
, and
Shi
,
Y.-H.
,
2011
, “
Orthogonal Learning Particle Swarm Optimization
,”
IEEE Trans. Evol. Comput.
,
15
(
6
), pp.
832
847
.10.1109/TEVC.2010.2052054
31.
Hu
,
Y.
,
Zhang
,
Y.
, and
Gong
,
D.
,
2021
, “
Multiobjective Particle Swarm Optimization for Feature Selection With Fuzzy Cost
,”
IEEE Trans. Cybernetics
,
51
(
2
), pp.
874
888
.10.1109/TCYB.2020.3015756
32.
Fang
,
K. T.
,
1980
, “
Uniform Design: An Application of Number-Theoretic Methods to Experimental Designs
,”
Acta Math. Appl. Sin.
,
3
, pp.
363
372
.https://cir.nii.ac.jp/crid/1570291225616774784
33.
Zheng
,
Q.
,
Feng
,
B. W.
,
Liu
,
Z. Y.
, and
Chang
,
H. C.
,
2021
, “
Application of Improved Particle Swarm Optimisation Algorithm in Hull Form Optimisation
,”
J. Mar. Sci. Eng.
,
9
(
9
), p.
955
.10.3390/jmse9090955
34.
Liang
,
B. X.
,
Zhao
,
Y. L.
, and
Li
,
Y.
,
2021
, “
A Hybrid Particle Swarm Optimization With Crisscross Learning Strategy
,”
Eng. Appl. Artif. Intell.
,
105
, p.
104418
.10.1016/j.engappai.2021.104418
You do not currently have access to this content.