Abstract

This study aims to improve the combined energy efficiency of data center cooling systems and heating/cooling systems in surrounding premises by implementing a modular cooling approach on a 42 U IT rack. The cooling solution uses a close-coupled technique where the servers are air-cooled, and the air in turn is cooled within the rack enclosure using an air-to-refrigerant heat exchanger. The refrigerant passively circulates in a loop as a thermosyphon, making the system self-sustaining during startup and shutdown, self-regulating under varying heat loads, and virtually maintenance-free by eliminating mechanical parts (other than the cabinet fans). A heat load range of 2 kW–7.5 kW is tested on a prototype system. Experimental results reveal stable thermosyphon operation using R1233zd(E) as the working fluid, a maximum evaporator pressure drop of 21.5 kPa at the highest heat load and a minimum thermosyphon resistance of 6.8 mK/W at a heat load of 5.7 kW. The air temperature profile across the load banks (server simulators) and evaporator follow the same profiles with varying heat loads. Heat losses from the cabinet due to natural convection and radiation are of the order of several Watts for heat loads below 4 kW and rise sharply to 1 kW at the highest heat load tested. The system time constant is determined to be 25 min. The heat recovery process can be financially and environmentally beneficial depending on the downstream application.

References

1.
Bizo
,
D.
,
Ascierto
,
R.
,
Lawrence
,
A.
, and
Davis
,
J.
,
2021
, “
Uptime Institute Global Data Center Survey 2021
,” Uptime Institute, UII-511, Sept.
2.
Limited
,
F.
,
2015
, “
Fujitsu Cool-Central Liquid Cooling Technology
,” ISC15, presented at the Frankfurt, accessed June 5, 2020, https://www.fujitsu.com/global/Images/fujitsu-cool-central-liquid-cooling-technology.pdf
3.
Wu
,
D.
,
Marcinichen
,
J. B.
, and
Thome
,
J. R.
,
2013
, “
Experimental Evaluation of a Controlled Hybrid Two-Phase Multi-Microchannel Cooling and Heat Recovery System Driven by Liquid Pump and Vapor Compressor
,”
Int. J. Refrig.
,
36
(
2
), pp.
375
389
.10.1016/j.ijrefrig.2012.11.011
4.
Steinbrecher
,
R. A.
, and
Schmidt
,
R.
,
2011
, “
Data Center Environments: ASHRAE's Evolving Thermal Guidelines
,”
ASHRAE J.
,
53
(
12
), pp.
42
49
.
5.
Marcinichen
,
J. B.
,
Olivier
,
J. A.
, and
Thome
,
J. R.
,
2012
, “
On-Chip Two-Phase Cooling of Datacenters: Cooling System and Energy Recovery Evaluation
,”
Appl. Therm. Eng.
,
41
, pp.
36
51
.10.1016/j.applthermaleng.2011.12.008
6.
Schmidt
,
R.
,
Beaty
,
D.
,
Rutt
,
J.
, and
Whitenack
,
K.
,
2006
,
Liquid Cooling Guidelines for Datacom Equipment Centers
, 1st ed.,
American Society of Heating, Refrigerating and Air-Conditioning Engineers
(ASHRAE TC9.9, ASHRAE Datacom Series, No. 4).
7.
Lamaison
,
N.
,
Marcinichen
,
J. B.
, and
Thome
,
J. R.
,
2013
, “
Two-Phase Flow Control of Electronics Cooling With Pseudo-Cpus in Parallel Flow Circuits: Dynamic Modeling and Experimental Evaluation
,”
ASME J. Electron. Packag.
,
135
(
3
), p.
031012
.10.1115/1.4024590
8.
Zhang
,
H.
,
Shao
,
S.
,
Xu
,
H.
,
Zou
,
H.
,
Tang
,
M.
, and
Tian
,
C.
,
2015
, “
Numerical Investigation on Integrated System of Mechanical Refrigeration and Thermosyphon for Free Cooling of Data Centers
,”
Int. J. Refrig.
,
60
, pp.
9
18
.10.1016/j.ijrefrig.2015.08.014
9.
Sbaity
,
A. A.
,
Louahlia
,
H.
, and
Le Masson
,
S.
,
2022
, “
Study of Annual Performance and Capacity of Data Center Passive Cooling Mode
,”
Int. J. Energy Res.
,
46
(
4
), pp.
4204
4221
.10.1002/er.7421
10.
Zhang
,
H.
,
Shao
,
S.
,
Tian
,
C.
, and
Zhang
,
K.
,
2018
, “
A Review on Thermosyphon and Its Integrated System With Vapor Compression for Free Cooling of Data Centers
,”
Renew. Sustain. Energy Rev.
,
81
, pp.
789
798
.10.1016/j.rser.2017.08.011
11.
Ding
,
T.
,
Chen
,
X.
,
Cao
,
H.
,
He
,
Z.
,
Wang
,
J.
, and
Li
,
Z.
,
2021
, “
Principles of Loop Thermosyphon and Its Application in Data Center Cooling Systems: A Review
,”
Renew. Sustain. Energy Rev.
,
150
, p.
111389
.10.1016/j.rser.2021.111389
12.
Tong
,
Z.
,
Wang
,
W.
, and
Fang
,
C.
,
2023
, “
Energy-Saving Potential Analysis of a CO2 Two-Phase Thermosyphon Loop System Used in Data Centers
,”
Energy
,
275
, p.
127328
.10.1016/j.energy.2023.127328
13.
Zou
,
S.
,
Zhang
,
Q.
, and
Yue
,
C.
,
2023
, “
Comparative Study on Different Energy-Saving Plans Using Water-Side Economizer to Retrofit the Computer Room Air Conditioning System
,”
J. Build. Eng.
,
69
, p.
106278
.10.1016/j.jobe.2023.106278
14.
Amalfi
,
R. L.
,
Salamon
,
T.
,
Cataldo
,
F.
,
Marcinichen
,
J. B.
, and
Thome
,
J. R.
,
2022
, “
Ultra-Compact Microscale Heat Exchanger for Advanced Thermal Management in Data Centers
,”
ASME J. Electron. Packag.
,
144
(
2
), p.
021110
.10.1115/1.4052767
15.
Zou
,
S.
,
Zhang
,
Q.
,
Yue
,
C.
,
Wang
,
J.
, and
Du
,
S.
,
2022
, “
Study on the Performance and Free Cooling Potential of a R32 Loop Thermosyphon System Used in Data Center
,”
Energy Build
,
256
, p.
111682
.10.1016/j.enbuild.2021.111682
16.
Zhang
,
H.
,
Shi
,
Z.
,
Liu
,
K.
,
Shao
,
S.
,
Jin
,
T.
, and
Tian
,
C.
,
2017
, “
Experimental and Numerical Investigation on a CO2 Loop Thermosyphon for Free Cooling of Data Centers
,”
Appl. Therm. Eng.
,
111
, pp.
1083
1090
.10.1016/j.applthermaleng.2016.10.029
17.
Zhang
,
H.
,
Shao
,
S.
,
Jin
,
T.
, and
Tian
,
C.
,
2017
, “
Numerical Investigation of a CO2 Loop Thermosyphon in an Integrated Air Conditioning System for Free Cooling of Data Centers
,”
Appl. Therm. Eng.
,
126
, pp.
1134
1140
.10.1016/j.applthermaleng.2016.12.135
18.
Tong
,
Z.
,
Liu
,
X.-H.
, and
Jiang
,
Y.
,
2017
, “
Experimental Study of the Self-Regulating Performance of an R744 Two-Phase Thermosyphon Loop
,”
Appl. Energy
,
186
, pp.
1
12
.10.1016/j.apenergy.2016.10.121
19.
Albertsen
,
B.
, and
Schmitz
,
G.
,
2021
, “
Experimental Parameter Studies on a Two-Phase Loop Thermosyphon Cooling System With R1233zd(E) and R1224 yd(Z)
,”
Int. J. Refrig.
,
131
, pp.
146
156
.10.1016/j.ijrefrig.2021.07.036
20.
Han
,
L.
,
Shi
,
W.
,
Wang
,
B.
,
Zhang
,
P.
, and
Li
,
X.
,
2013
, “
Development of an Integrated Air Conditioner With Thermosyphon and the Application in Mobile Phone Base Station
,”
Int. J. Refrig.
,
36
(
1
), pp.
58
69
.10.1016/j.ijrefrig.2012.09.012
21.
Zhang
,
H.
,
Shao
,
S.
,
Xu
,
H.
,
Zou
,
H.
, and
Tian
,
C.
,
2015
, “
Integrated System of Mechanical Refrigeration and Thermosyphon for Free Cooling of Data Centers
,”
Appl. Therm. Eng.
,
75
, pp.
185
192
.10.1016/j.applthermaleng.2014.09.060
22.
Zhang
,
H.
,
Shao
,
S.
,
Xu
,
H.
,
Zou
,
H.
,
Tang
,
M.
, and
Tian
,
C.
,
2017
, “
Simulation on the Performance and Free Cooling Potential of the Thermosyphon Mode in an Integrated System of Mechanical Refrigeration and Thermosyphon
,”
Appl. Energy
,
185
, pp.
1604
1612
.10.1016/j.apenergy.2016.01.053
23.
Shao
,
S.
,
Liu
,
H.
,
Zhang
,
H.
, and
Tian
,
C.
,
2019
, “
Experimental Investigation on a Loop Thermosyphon With Evaporative Condenser for Free Cooling of Data Centers
,”
Energy
,
185
, pp.
829
836
.10.1016/j.energy.2019.07.095
24.
Wang
,
Z.
,
Zhang
,
X.
,
Li
,
Z.
, and
Luo
,
M.
,
2015
, “
Analysis on Energy Efficiency of an Integrated Heat Pipe System in Data Centers
,”
Appl. Therm. Eng.
,
90
, pp.
937
944
.10.1016/j.applthermaleng.2015.07.078
25.
Ma
,
X.
,
Zhang
,
Q.
, and
Zou
,
S.
,
2022
, “
An Experimental and Numerical Study on the Thermal Performance of a Loop Thermosyphon Integrated With Latent Thermal Energy Storage for Emergency Cooling in a Data Center
,”
Energy
,
253
, p.
123946
.10.1016/j.energy.2022.123946
26.
Sbaity
,
A. A.
,
Louahlia
,
H.
, and
Le Masson
,
S.
,
2022
, “
Performance of a Hybrid Thermosyphon Condenser for Cooling a Typical Data Center Under Various Climatic Constraints
,”
Appl. Therm. Eng.
,
202
, p.
117786
.10.1016/j.applthermaleng.2021.117786
27.
Wang
,
X.
,
Yang
,
J.
,
Wen
,
Q.
,
Xiang
,
J.
,
Shittu
,
S.
,
Zhao
,
X.
, and
Wang
,
Z.
,
2023
, “
Numerical and Experimental Investigation of a Novel Liquid Upper-Feeding Micro-Channel Flat Loop Thermosyphon Cooling and Heat Recovery System
,”
Int. J. Green Energy
,
21
(
2
), pp.
399
412
.10.1080/15435075.2023.2196335
28.
Wang
,
X.
,
Wen
,
Q.
,
Wang
,
X.
,
Qiu
,
Z.
,
Wang
,
Z.
,
Shittu
,
S.
,
Zhao
,
X.
,
Xiang
,
J.
, and
Weng
,
C.
,
2022
, “
Experimental Study on Dual-Evaporator Based Microchannel Flat Loop Thermosyphon (DE-MFLTS) Waste Heat Recovery System
,”
Case Stud. Therm. Eng.
,
39
, p.
102408
.10.1016/j.csite.2022.102408
29.
Cataldo
,
F.
,
Amalfi
,
R. L.
,
Marcinichen
,
J. B.
, and
Thome
,
J. R.
,
2020
, “
Implementation of Passive Two-Phase Cooling to an Entire Server Rack
,”
19th IEEE Intersociety Confernce on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm)
,
Orlando, FL
, July 21–23, pp.
396
401
.10.1109/ITherm45881.2020.9190327
30.
Szczukiewicz
,
S.
,
Lamaison
,
N.
,
Marcinichen
,
J. B.
,
Thome
,
J. R.
, and
Beucher
,
P. J.
,
2015
, “
Passive Thermosyphon Cooling System for High Heat Flux Servers
,” ASME Paper No. IPACK2015-48288. 10.1115/IPACK2015-48288
31.
Amalfi
,
R. L.
,
2023
, “
Towards Green Technology: Modeling of a Compact Plate Heat Exchanger Condenser for Thermosyphon Cooling of Entire High Power Datacenter Racks
,” Electronics Cooling, accessed June 25, 2023, https://www.electronics-cooling.com/2019/06/towards-green-technology-modeling-of-a-compact-plate-heat-exchanger-condenser-for-thermosyphon-cooling-of-entire-high-power-datacenter-racks/
32.
Li
,
X.
,
Zhang
,
C.
,
Dong
,
J.
,
Han
,
Z.
, and
Wang
,
S.
,
Feasibility Investigation on a Novel Rack-Level Cooling System for Energy-Saving Retrofit of Medium-and-Small Data Centers
, Vol.
229
,
Elsevier Ltd.
,
Amsterdam, The Netherlands
.
33.
Meng
,
F.
,
Zhang
,
Q.
,
Lin
,
Y.
,
Zou
,
S.
,
Fu
,
J.
,
Liu
,
B.
,
Wang
,
W.
,
Ma
,
X.
, and
Du
,
S.
,
2022
, “
Field Study on the Performance of a Thermosyphon and Mechanical Refrigeration Hybrid Cooling System in a 5G Telecommunication Base Station
,”
Energy
,
252
, p.
123744
.10.1016/j.energy.2022.123744
34.
Koito
,
Y.
,
Maki
,
T.
,
Suzuki
,
A.
, and
Sato
,
K.
,
2022
, “
Operational Characteristics of a JEST-Type Loop Thermosyphon With HFE Working Fluid (Effect of Initial Liquid Level)
,”
J. Therm. Sci. Technol
,
17
(
3
), p. 22–00077.10.1299/jtst.22-00077
35.
Lu
,
Q.
, and
Jia
,
L.
,
2016
, “
Experimental Study on Rack Cooling System Based on a Pulsating Heat Pipe
,”
J. Therm. Sci.
,
25
(
1
), pp.
60
67
.10.1007/s11630-016-0834-2
36.
Khalid
,
R.
,
Schon
,
S. G.
,
Ortega
,
A.
, and
Wemhoff
,
A. P.
,
2019
, “
Waste Heat Recovery Using Coupled 2-Phase Cooling Heat-Pump Driven Absorption Refrigeration
,”
18th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm)
, Las Vegas, NV, May 28–31, pp.
684
692
.10.1109/ITHERM.2019.8757465
37.
Khalid
,
R.
,
Youssef
,
E.
,
Amalfi
,
R. L.
,
Ortega
,
A.
, and
Wemhoff
,
A. P.
,
2024
, “
Validation and Application of a Finned Tube Heat Exchanger for Rack-Level Cooling
,”
ASME J. Electron. Packag.
, 146(2), p.
021005
.10.1115/1.4063252
38.
URI,
2023
, “
Shop R1233ZD Refrigerants - URI
,” accessed Apr. 22, 2023, https://www.uri.com/refrigerants-and-chemicals/refrigerants/gases/r1233zd/
39.
URI,
2023
, “
Shop 30R134A - R134A Refrigerant - National Refrigerants - URI
,” accessed Apr. 22, 2023, https://www.uri.com/refrigerants-and-chemicals/refrigerants/gases/r134a/30r134a-zid30R134A-product?AutoSuggest=R134a
40.
Heydari
,
A.
,
2002
, “
Miniature Vapor Compression Refrigeration Systems for Active Cooling of High Performance Computers
,”
Eighth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITHERM)
,
IEEE, San Diego, CA, May 30–June 1,
pp.
371
378
.10.1109/ITHERM.2002.1012480
41.
Lee
,
J.
, and
Mudawar
,
I.
,
2006
, “
Implementation of Microchannel Evaporator for High-Heat-Flux Refrigeration Cooling Applications
,”
ASME J. Electron. Packag.
,
128
(
1
), pp.
30
37
.10.1115/1.2159006
42.
Wu
,
Z.
, and
Du
,
R.
,
2011
, “
Design and Experimental Study of a Miniature Vapor Compression Refrigeration System for Electronics Cooling
,”
Appl. Therm. Eng.
,
31
(
2–3
), pp.
385
390
.10.1016/j.applthermaleng.2010.09.030
43.
ASHRAE
, “
ASHRAE Standing Standard Project Committee 34 and ASHRAE TC 3.1
,” ANSI/ASHRAE Addendum g to ANSI/ASHRAE Standard 34-2016, ASHRAE, accessed Jan. 31, 2024, https://www.ashrae.org/File%20Library/Technical%20Resources/Standards%20and%20Guidelines/Standards%20Addenda/34_2016_g_20180628.pdf
44.
Omega Engineering Inc.
, 2009,
Omega Temperature Measurement Handbook
, Volume MMX, 6th ed.,
Omega Engineering Inc.
,
Norwalk, CT
.
45.
Frei
,
M.
,
Hischier
,
I.
,
Deb
,
C.
,
Sigrist
,
D.
, and
Schlueter
,
A.
,
2021
, “
Impact of Measurement Uncertainty on Building Modeling and Retrofitting Decisions
,”
Front. Built Environ.
,
7
, p.
675913
.10.3389/fbuil.2021.675913
46.
Bieliski
,
H.
, and
Mikielewicz
,
J.
,
2011
, “
Natural Circulation in Single and Two Phase Thermosyphon Loop With Conventional Tubes and Minichannels
,”
Heat Transfer - Mathematical Modelling, Numerical Methods and Information Technology
,
A.
Belmiloudi
, ed.,
InTech
,
Chicago, IL
.
47.
Vijayan
,
P. K.
, and
Gartia
,
M. R.
,
2005
, “
Steady State Behaviour of Single-Phase and Two-Phase Natural Circulation Loops
,” Second RCM on the IAEA CRP on ‘Natural circulation phenomena, modeling and reliability of passive systems that utilize natural circulation’, Corvallis, OR, Aug. 29–Sept. 2.
48.
Rouhani
,
S. Z.
, and
Axelsson
,
E.
,
1970
, “
Calculation of Void Volume Fraction in the Subcooled and Quality Boiling Regions
,”
Int. J. Heat Mass Transfer
,
13
(
2
), pp.
383
393
.10.1016/0017-9310(70)90114-6
49.
Heydari
,
A.
,
Manaserh
,
Y.
,
Abubakar
,
A.
,
Caceres
,
C.
,
Miyamura
,
H.
,
Ortega
,
A.
, and
Rodriguez
,
J.
,
2022
, “
Direct-to-Chip Two-Phase Cooling for High Heat Flux Processors
,” ASME Paper No. IPACK2022-97047. 10.1115/IPACK2022-97047
50.
Khalili
,
S.
,
Rangarajan
,
S.
,
Sammakia
,
B.
, and
Gektin
,
V.
,
2019
, “
An Experimental Investigation on the Fluid Distribution in a Two-Phase Cooled Rack Under Steady and Transient IT Load
,”
ASME 2019 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems, Anaheim, CA, Oct. 7–9
.
51.
IBM
,
2023
, “
IBM Documentation
,” accessed Sept. 24, 2023, https://www.ibm.com/docs/en/xiv-storage-system?topic=exchanger-performance
52.
QATS
,
2023
, “
Case-Study_Cabinet-Cooling-Using-Water-and-Refrigeration-System.pdf
,” accessed Oct. 1, 2023, https://qats.com/cms/wp-content/uploads/2012/09/Case-Study_Cabinet-Cooling-Using-Water-and-Refrigeration-System.pdf
53.
Khalid
,
R.
,
Amalfi
,
R. L.
, and
Wemhoff
,
A. P.
,
2021
, “
Rack-Level Thermosyphon Cooling and Vapor-Compression Driven Heat Recovery: Evaporator Model
,” ASME Paper No. IPACK2021-73269.10.1115/IPACK2021-73269
54.
ASME
,
2006
, “
ASME PTC Uncertainty Document_2005.pdf
,”
ASME
,
New York
.
55.
Coleman
,
H. W.
, and
Steele
,
W. G.
,
2009
,
Experimentation, Validation, and Uncertainty Analysis for Engineers
, 3rd ed.,
Wiley
,
Hoboken, NJ
.
56.
Mondéjar
,
M. E.
,
McLinden
,
M. O.
, and
Lemmon
,
E. W.
,
2015
, “
Thermodynamic Properties of Trans -1-Chloro-3,3,3-Trifluoropropene (R1233zd(E)): Vapor Pressure, (p, ρ, T) Behavior, and Speed of Sound Measurements, and Equation of State
,”
J. Chem. Eng. Data
,
60
(
8
), pp.
2477
2489
.10.1021/acs.jced.5b00348
57.
Perkins
,
R. A.
,
Huber
,
M. L.
, and
Assael
,
M. J.
,
2017
, “
Measurement and Correlation of the Thermal Conductivity of Trans -1-Chloro-3,3,3-Trifluoropropene (R1233zd)
,”
J. Chem. Eng. Data
,
62
(
9
), pp.
2659
2665
.10.1021/acs.jced.7b00106
58.
Lemmon
,
E. W.
,
Bell
,
I. H.
,
Huber
,
M. L.
, and
McLinden
,
M. O.
,
2018
, “
NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP
,”
National Institute of Standards and Technology, Standard Reference Data Program
,
Gaithersburg, MD
.
59.
Kondou
,
C.
,
Nagata
,
R.
,
Nii
,
N.
,
Koyama
,
S.
, and
Higashi
,
Y.
,
2015
, “
Surface Tension of Low GWP Refrigerants R1243zf, R1234ze(Z), and R1233zd(E)
,”
Int. J. Refrig.
,
53
, pp.
80
89
.10.1016/j.ijrefrig.2015.01.005
60.
Iyengar
,
M.
,
2023
, “
Energy Consumption of Information Technology Data Centers
,” Electronics Cooling, accessed Sept. 23, 2023, https://www.electronics-cooling.com/2010/12/energy-consumption-of-information-technology-data-centers/
61.
Davis
,
J.
,
Bizo
,
D.
,
Lawrence
,
A.
,
Rogers
,
O.
, and
Smolaks
,
M.
,
2022
, “
Uptime Institute Global Data Center Survey 2022
,” UII-78 v1.0M, accessed Sept. 14, 2022, https://uptimeinstitute.com/resources/research-and-reports/uptime-institute-global-data-center-survey-results-2022
62.
CORESITE
, “
Facing the Data Center Power Density Challenge
,” accessed Sept. 23, 2023, https://www.coresite.com/blog/facing-the-data-center-power-density-challenge
63.
Sheldon
,
R.
,
2023
, “
Liquid Cooling vs. Air Cooling in the Data Center
,” Data Center, accessed Sept. 24, https://www.techtarget.com/searchdatacenter/feature/Liquid-cooling-vs-air-cooling-in-the-data-center
64.
Lenovo Docs
,
2023
, “
Rear Door Heat eXchanger V2 | ThinkSystem Heavy Duty Rack Cabinets | Lenovo Docs
,” accessed Sept. 24, 2023, https://pubs.lenovo.com/hdc_rackcabinet/options_42u_heat_exchange_ door
65.
Scholz
,
W.
,
2023
, “
Liquid Cooling: Exceeding the Limits of Air Cooling to Unlock Greater Potential in HPC
,” XENON Systems, accessed Sept. 24, 2023, https://xenon.com.au/white-papers/liquid-cooling-exceeding-the-limits-of-air-cooling-to-unlock-greater-potential-in-hpc/
66.
Motivair
,
2023
, “
ChilledDoor | Data Center & IT Cooling | Motivair
,” accessed Oct. 1, 2023, https://www.motivaircorp.com/products/chilleddoor/
67.
Vertiv
,
2023
, “
Liquid Cooling Options for Data Centers
,” accessed Oct. 1, https://www.vertiv.com/en-emea/solutions/learn-about/liquid-cooling-options-for-data-centers/
68.
ZutaCore
,
2023
, “
Solutions – ZutaCore
,” accessed Oct. 1, 2023, https://zutacore.com/solutions/
69.
GRC, Inc.
,
2020
, “
ICEraQ Data Center Server Rack Server Cooling
,” Green Revolution Cooling, accessed June 5, https://www.grcooling.com/iceraq/
70.
Haghshenas
,
K.
,
Setz
,
B.
,
Blosch
,
Y.
, and
Aiello
,
M.
,
2023
, “
Enough Hot Air: The Role of Immersion Cooling
,”
Energy Inf.
,
6
(
1
), p.
14
.10.1186/s42162-023-00269-0
71.
Degree Controls Inc.
,
2022
, “
° C Grid Multi-Point Air Measurement System
,” Degree Controls Inc., accessed Dec. 31, 2022, https://www.degreec.com/products/airflow-tools-instruments/airflow-measurement-instrumentation/c-grid/
72.
Degree Controls Inc.
,
2022
, “
° C Grate Air Velocity & Temperature Measurement - Degree Controls Inc
,” accessed Dec. 31, 2022, https://www.degreec.com/products/airflow-tools-instruments/airflow-tools/c-grate/
73.
Setra Systems Inc.
,
2022
, “
Model 230 Wet-to-Wet Differential Water Pressure Transducer | Setra Systems
,” accessed Dec. 31, 2022, https://www.setra.com/product/pressure/model-230
You do not currently have access to this content.