Abstract

Sintered silver is a popular material for printing conductive traces in printed hybrid electronics (PHE). However, due to the novel materials and printing techniques in PHEs, reliability still needs to be adequately characterized for all types of life-cycle application conditions. This paper focuses on characterizing the reliability of printed silver traces fabricated with extrusion printing and aerosol jet printing (AJP) processes, under severe shock conditions up to 40,000 g peak acceleration, resulting in very high strain magnitudes and strain rates. This study utilizes test specimens of cantilever form factor to study the reliability of three-dimensional printed traces and substrates. Traces printed using both techniques were found to withstand repetitive drops at up to 40,000 g peak acceleration. However, extrusion-printed silver traces were found to be more reliable than their AJP counterparts, because of the extruded traces' superior adhesion to the FR4 substrate and lack of sintering shrinkage cracks. Strain gauges revealed strains in excess of 10,000 με during a 40,000 g shock event. A calibrated finite element (FE) model revealed that the strains at the trace location exceeded 15,000 με during a 40,000 g shock event.

References

1.
Wong
,
E. H.
,
Seah
,
S. K. W.
, and
Shim
,
V. P. W.
,
2008
, “
A Review of Board Level Solder Joints for Mobile Applications
,”
Microelectron. Reliab.
,
48
(
11–12
), pp.
1747
1758
.10.1016/j.microrel.2008.08.006
2.
Deshpande
,
A.
,
Jiang
,
Q.
, and
Dasgupta
,
A.
,
2020
, “
Effect of Microscale Heterogeneities and Stress State on the Mechanical Behavior of Solder Joints
,” Proceedings of the 2020 19th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (
ITherm
), Orlando, FL, July 21–23, pp.
1024
1028
.10.1109/ITherm45881.2020.9190561
3.
Valentine
,
A. D.
,
Busbee
,
T. A.
,
Boley
,
J. W.
,
Raney
,
J. R.
,
Chortos
,
A.
,
Kotikian
,
A.
,
Berrigan
,
J. D.
,
Durstock
,
M. F.
, and
Lewis
,
J. A.
,
2017
, “
Hybrid 3D Printing of Soft Electronics
,”
Adv. Mater.
,
29
(
40
), p.
1703817
.10.1002/adma.201703817
4.
Hines
,
D. R.
,
Gu
,
Y.
,
Martin
,
A. A.
,
Li
,
P.
,
Fleischer
,
J.
,
Clough-Paez
,
A.
,
Stackhouse
,
G.
,
Dasgupta
,
A.
, and
Das
,
S.
,
2021
, “
Considerations of Aerosol-Jet Printing for the Fabrication of Printed Hybrid Electronic Circuits
,”
Addit. Manuf.
,
47
, p.
102325
.10.1016/j.addma.2021.102325
5.
Gharaibeh
,
M. A.
, and
Pitarresi
,
J. M.
,
2022
, “
A Methodology to Calculate the Equivalent Static Loading for Simulating Electronic Assemblies Under Impact
,”
Microelectron. Reliab.
,
139
, p.
114842
.10.1016/j.microrel.2022.114842
6.
Soman
,
V. V.
,
Khan
,
Y.
,
Zabran
,
M.
,
Schadt
,
M.
,
Hart
,
P.
,
Shay
,
M.
,
Egitto
,
F. D.
,
Papathomas
,
K. I.
,
Yamamoto
,
N. A. D.
,
Han
,
D.
,
Arias
,
A. C.
,
Ghose
,
K.
,
Poliks
,
M. D.
, and
Turner
,
J. N.
,
2019
, “
Reliability Challenges in Fabrication of Flexible Hybrid Electronics for Human Performance Monitors: A System-Level Study
,”
IEEE Trans. Compon., Packag. Manuf. Technol.
,
9
(
9
), pp.
1872
1887
.10.1109/TCPMT.2019.2919866
7.
Lall
,
P.
,
Narangaparambil
,
J.
,
Leever
,
B.
, and
Miller
,
S.
,
2020
, “
Flexure and Twist Test Reliability Assurance of Flexible Electronics
,”
ASME J. Electron. Packag.
,
142
(
3
), p. 031121.10.1115/1.4047844
8.
Lall
,
P.
,
Narangaparambil
,
J.
,
Leever
,
B.
, and
Miller
,
S.
,
2019
, “
Effect of Sintering Temperature on the Fatigue Life of Additively Printed Electronics During Cyclic Bending
,” Proceedings of the 2019 18th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (
ITherm
), Las Vegas, NV, May 28–31, pp.
189
197
.10.1109/ITHERM.2019.8757342
9.
Davila-Frias
,
A.
,
Yadav
,
O. P.
, and
Marinov
,
V.
,
2020
, “
A Review of Methods for the Reliability Testing of Flexible Hybrid Electronics
,”
IEEE Trans. Compon., Packag. Manuf. Technol.
,
10
(
11
), pp.
1902
1912
.10.1109/TCPMT.2020.3029250
10.
Lall
,
P.
,
Jang
,
H.
,
Leever
,
B.
, and
Miller
,
S.
,
2019
, “
Method for Assessment of Folding-Reliability of Flexible Electronics in Wearable Applications
,” Proceedings of the 2019 18th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (
ITherm
), Las Vegas, NV, May 28–31, pp.
177
182
.10.1109/ITHERM.2019.8757431
11.
Zhao
,
B.
,
Riso
,
C.
,
Leslie
,
D.
,
Dasgupta
,
A.
,
Das
,
S.
,
Fleischer
,
J.
, and
Hines
,
D.
,
2021
, “
Temperature Cycling Study of Aerosol-Jet Printed Conductive Silver Traces in Printed Electronics
,”
ASME
Paper No. IPACK2021-73197.10.1115/IPACK2021-73197
12.
Wang
,
X.
,
Yang
,
J.
,
Liu
,
X.
,
Zheng
,
P.
,
Song
,
Q.
,
Song
,
B.
, and
Liu
,
S.
,
2022
, “
Reliability Analysis of Solder Joints on Rigid-Flexible Printed Circuit Board for MEMS Pressure Sensors Under Combined Temperature Cycle and Vibration Loads With Continuously Monitored Electrical Signals
,”
ASME J. Electron. Packag.
,
144
(
1
), p. 011005.10.1115/1.4049813
13.
Tilford
,
T.
,
Stoyanov
,
S.
,
Braun
,
J.
,
Janhsen
,
J. C.
,
Burgard
,
M.
,
Birch
,
R.
, and
Bailey
,
C.
,
2018
, “
Design, Manufacture and Test for Reliable 3D Printed Electronics Packaging
,”
Microelectron. Reliab.
,
85
, pp.
109
117
.10.1016/j.microrel.2018.04.008
14.
Lall
,
P.
, and
Thomas
,
T.
,
2019
, “
Failure Modes of Flexible Electronics Under Mechanical Vibration
,” Proceedings of the 2019 18th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (
ITherm
), Las Vegas, NV, May 28–31, pp.
1055
1062
.10.1109/ITHERM.2019.8757314
15.
Abusalma
,
H.
,
Dasgupta
,
A.
,
Yu
,
J.
,
Bujanda
,
A.
, and
Tsang
,
H.
,
2022
, “
Drop Durability of Printed Hybrid Electronic (PHE) Assemblies Under Extreme Acceleration Level
,”
ASME
Paper No. IPACK2022-97382.10.1115/IPACK2022-97382
16.
Leslie
,
D.
,
Dasgupta
,
A.
, and
Morillo
,
C.
,
2017
, “
Viscoplastic Properties of Pressure-Less Sintered Silver Materials Using Indentation
,”
Microelectron. Reliab.
,
74
, pp.
121
130
.10.1016/j.microrel.2017.04.009
17.
Dalal
,
N.
,
Gu
,
Y.
,
Chen
,
G.
,
Hines
,
D. R.
,
Dasgupta
,
A.
, and
Das
,
S.
,
2020
, “
Effect of Gas Flow Rates on Quality of Aerosol Jet Printed Traces With Nanoparticle Conducting Ink
,”
ASME J. Electron. Packag.
,
142
(
1
), p. 011012.10.1115/1.4044960
18.
Dalal
,
N.
,
Gu
,
Y.
,
Hines
,
D. R.
,
Dasgupta
,
A.
, and
Das
,
S.
,
2019
, “
Cracks in the 3D-Printed Conductive Traces of Silver Nanoparticle Ink
,”
J. Micromech. Microeng.
,
29
(
9
), p.
097001
.10.1088/1361-6439/ab2f25
19.
Qian
,
C.
,
Gu
,
T.
,
Wang
,
P.
,
Cai
,
W.
,
Fan
,
X.
,
Zhang
,
G.
, and
Fan
,
J.
,
2022
, “
Tensile Characterization and Constitutive Modeling of Sintered Nano-Silver Particles Over a Range of Strain Rates and Temperatures
,”
Microelectron. Reliab.
,
132
, p.
114536
.10.1016/j.microrel.2022.114536
20.
JEDEC
,
2003
, “
Board Level Drop Test Method of Components for Handheld Electronic Products
,” JEDEC Solid State Technology Association, Arlington, VA, pp.
1
22
.https://www.jedec.org/standardsdocuments/docs/jesd-22-b111
21.
JEDEC
,
2013
, “
Mechanical Shock—Component and Subassembly
,” JEDEC, Arlington, VA, Standard No. JESD22-B110B.
22.
JEDEC
,
2004
, “
Mechanical Shock
,” JEDEC, Arlington, VA, Standard No. JESD22-B104C.
23.
Meng
,
J.
,
Douglas
,
S. T.
, and
Dasgupta
,
A.
,
2016
, “
MEMS Packaging Reliability in Board-Level Drop Tests Under Severe Shock and Impact Loading Conditions—Part I: Experiment
,”
IEEE Trans. Compon., Packag. Manuf. Technol.
,
6
(
11
), pp.
1595
1603
.10.1109/TCPMT.2016.2611646
24.
Meng
,
J.
, and
Dasgupta
,
A.
,
2016
, “
MEMS Packaging Reliability in Board-Level Drop Tests Under Severe Shock and Impact Loading Conditions—Part II: Fatigue Damage Modeling
,”
IEEE Trans. Compon., Packag. Manuf. Technol.
,
6
(
11
), pp.
1604
1614
.10.1109/TCPMT.2016.2614381
25.
Lall
,
P.
,
Domala
,
K.
,
Deep
,
J.
, and
Lowe
,
R.
,
2017
, “
Effectiveness of Potting Methods and Underfills on the Enhancement of Survivability of Fine Pitch Electronics at 25,000 g Shock Loads
,” Proceedings of the 2017 16th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (
ITherm
), Orlando, FL, May 30–June 2, pp.
1262
1274
.10.1109/ITHERM.2017.7992629
26.
Yu
,
D.
,
Kwak
,
J. B.
,
Park
,
S.
, and
Lee
,
J.
,
2010
, “
Dynamic Responses of PCB Under Product-Level Free Drop Impact
,”
Microelectron. Reliab.
,
50
(
7
), pp.
1028
1038
.10.1016/j.microrel.2010.03.003
27.
Park
,
S.
,
Shah
,
C.
,
Kwak
,
J.
,
Jang
,
C.
,
Pitarresi
,
J.
,
Park
,
T.
, and
Jang
,
S.
,
2007
, “
Transient Dynamic Simulation and Full-Field Test Validation for a Slim-PCB of Mobile Phone Under Drop/Impact
,”
Proceedings of the 57th Electronic Components and Technology Conference
, Sparks, NV, May 29–June 1, pp.
914
923
.10.1109/ECTC.2007.373907
You do not currently have access to this content.