Abstract

Power modules are utilized to control electric power and play a key role in the systems for energy conversion. One of the reliability problems in power modules is the wire-liftoff, in which an aluminum wire delaminates from a silicon chip. The wire-liftoff phenomenon is a thermal fatigue failure caused by repeated temperature cycles during the operation of power modules. According to an experimental study, the wire-liftoff lifetime decreases with increase in the maximum junction temperature of a temperature cycle, Tmax, then levels off above 200 °C of Tmax. Such a saturation phenomenon of the wire-liftoff lifetime is main concern of the present study. We select the nonlinear fracture mechanics parameter T*-integral range, as a physical quantity describing the wire-liftoff lifetime. The T*-integral range, ΔT*, is only one fracture mechanics parameter that can be applied to thermal fatigue under a cyclic thermo-elastic-plastic creep condition. We perform nonlinear finite element analyses of a power module to calculate the ΔT* based on the mathematical expression of ΔT* for various temperature cycles. As a result, the ΔT* obtained from the exact method based on the mathematical expression of ΔT* is expected to be utilized for quantitative estimation of wire-liftoff lifetime in a wide temperature range of low to high temperatures.

References

1.
Shishido
,
N.
,
Hayama
,
Y.
,
Morooka
,
W.
,
Hagihara
,
S.
, and
Miyazaki
,
N.
,
2019
, “
Application of Nonlinear Fracture Mechanics Parameter to Predicting Wire-Liftoff Lifetime of Power Module at Elevated Temperature
,”
IEEE J. Emerg. Sel. Top. Power Electron.
,
7
(
3
), pp.
1604
1614
.10.1109/JESTPE.2019.2914244
2.
Miyazaki
,
N.
,
Shishido
,
N.
, and
Hayama
,
Y.
,
2021
, “
Review of Methodologies for Structural Integrity Evaluation of Power Modules
,”
ASME J. Electron. Packag.
,
143
(
2
), p.
020801
.10.1115/1.4048038
3.
Matsunaga
,
T.
, and
Uegai
,
Y.
,
2006
, “
Thermal Fatigue Life Evaluation of Aluminum Wire Bonds
,”
Proceedings of First Electronics System Integration Technology Conference
,
Dresden, Germany
,
Sept. 5–7
, pp.
726
731
.10.1109/ESTC.2006.280092
4.
Agyakwa
,
P. A.
,
Corfield
,
M. R.
,
Yang
,
L.
,
Li
,
J. F.
,
Marques
,
V. M. F.
, and
Johnson
,
C. M.
,
2011
, “
Microstructural Evolution of Ultrasonically Bonded High Purity Al Wire During Extended Range Thermal Cycling
,”
Microelectron. Reliab.
,
51
(
2
), pp.
406
415
.10.1016/j.microrel.2010.08.018
5.
Yamada
,
Y.
,
Takaku
,
Y.
,
Yagi
,
Y.
,
Nakagawa
,
I.
,
Atsumi
,
T.
,
Shirai
,
M.
,
Ohnuma
,
I.
, and
Ishida
,
K.
,
2007
, “
Reliability of Wire-Bonding and Solder Joint for High Temperature Operation of Power Semiconductor Device
,”
Microelectron. Reliab.
,
47
(
12
), pp.
2147
2151
.10.1016/j.microrel.2007.07.102
6.
Yang
,
L.
,
Agyakwa
,
P. A.
, and
Johnson
,
C. M.
,
2011
, “
A Time-Domain Physics-of-Failure Model for the Lifetime Prediction of Wire Bond Connection
,”
Microelectron. Reliab.
,
51
(
9–11
), pp.
1882
1886
.10.1016/j.microrel.2011.07.052
7.
Rice
,
J. R.
,
1968
, “
A Path Independent Integral and the Approximate Analysis of Strain Concentration by Notches and Cracks
,”
ASME J. Appl. Mech.
,
35
(
2
), pp.
379
386
.10.1115/1.3601206
8.
Atluri
,
S. N.
,
1982
, “
Path-Independent Integrals in Finite Elasticity and Inelasticity With Body Forces, Inertia, and Arbitrary Crack-Face Conditions
,”
Eng. Fract. Mech.
,
16
(
3
), pp.
341
364
.10.1016/0013-7944(82)90113-8
9.
Brust
,
F. W.
,
McGowan
,
J. J.
, and
Atluri
,
S. N.
,
1986
, “
A Combined Numerical/Experimental Study of Ductile Crack Growth After a Large Unloading, Using T*, J, and CTOA Criteria
,”
Eng. Fract. Mech.
,
23
(
3
), pp.
537
550
.10.1016/0013-7944(86)90161-X
10.
Lamba
,
H. S.
,
1975
, “
The J-Integral Applied to Cyclic Loading
,”
Eng. Fract. Mech.
,
7
(
4
), pp.
693
703
.10.1016/0013-7944(75)90025-9
11.
Dowling
,
N. E.
, and
Begley
,
J. A.
,
1976
, “
Fatigue Crack Growth During Gross Plasticity and the J-Integral
,”
Mechanics of Crack Growth
,
J.
Rice
, and
P.
Paris
, eds..,
ASTM International
,
West Conshohocken, PA
, pp.
82
103
.
12.
Smelser
,
R. E.
, and
Gurtin
,
M. E.
,
1977
, “
On the J-Integral for Bi-Material Bodies
,”
Int. J. Fract.
,
13
(
3
), pp.
382
384
.10.1007/BF00040155
13.
Hagihara
,
S.
,
Shishido
,
N.
,
Hayama
,
Y.
, and
Miyazaki
,
N.
,
2021
, “
Methodology for Calculating J-Integral Range ΔJ Under Cyclic Loading
,”
Int. J. Pressure Vessels Piping
,
191
, p.
104343
.10.1016/j.ijpvp.2021.104343
14.
Furuhashi
,
I.
, and
Wakai
,
T.
,
1995
, “
Revisions of Fracture Mechanics Parameters Analysis Code CANIS-J(2D)
,”
JAEA
,
Tokai-mura, Japan
, Report No.
PNC-TN9410-95–080
.https://jopss.jaea.go.jp/search/servlet/search?4035503&language=1
15.
Kishimoto
,
K.
,
Aoki
,
S.
, and
Sakata
,
M.
,
1980
, “On the Path Independent Integral Ĵ,”
Eng. Fract. Mech.
,
13
(
4
), pp.
841
850
.10.1016/0013-7944(80)90015-6
16.
Nayroles
,
B.
,
Touzot
,
G.
, and
Villon
,
P.
,
1992
, “
Generalizing the Finite Element Method: Diffuse Approximation and Diffuse Elements
,”
Comput. Mech.
,
10
(
5
), pp.
307
318
.10.1007/BF00364252
17.
Hagihara
,
S.
,
Tsunori
,
M.
,
Ikeda
,
T.
, and
Miyazaki
,
N.
,
2003
, “
Element-Free Galerkin Method Using Directed Graph and Its Application to Creep Problems
,”
Comput. Mech.
,
31
(
6
), pp.
489
495
.10.1007/s00466-003-0455-y
18.
Hagihara
,
S.
,
Tsunori
,
M.
,
Ikeda
,
T.
, and
Miyazaki
,
N.
,
2007
, “
Application of Meshfree Method to Elastic-Plastic Fracture Mechanics Parameter Analysis
,”
Comput. Model. Eng. Sci.
,
17
(
2
), pp.
63
72
.10.3970/cmes.2007.017.063
19.
Nix
,
F. C.
, and
MacNair
,
D.
,
1941
, “
The Thermal Expansion of Pure Metals: Copper, Gold, Aluminum, Nickel, and Iron
,”
Phys. Rev.
,
60
(
8
), pp.
597
605
.10.1103/PhysRev.60.597
20.
Kaufmann
,
J. G.
,
1999
,
Properties of Aluminum Alloy: Tensile, Creep, and Fatigue Data at High and Low Temperatures
,
ASM International
, Detroit, MI, p.
9
.
21.
ASME,
2001
,
Power Piping, ASME Code for Pressure Piping, B31.1-2001
,
ASME
, New York, p.
223
.
22.
Yeh
,
M.
, and
Sherby
,
O. D.
,
1984
, “
Unification of Harper-Dorn and Power Law Creep Through Consideration of Internal Stress
,”
Acta Metall.
,
32
(
9
), pp.
1561
1572
.10.1016/0001-6160(84)90102-0
23.
Luthy
,
H.
,
Miller
,
A. K.
, and
Sherby
,
O. D.
,
1980
, “
The Stress and Temperature Dependence of Steady-State Flow at Intermediate Temperatures for Pure Polycrystalline Aluminum
,”
Acta Metall.
,
28
(
2
), pp.
169
178
.10.1016/0001-6160(80)90066-8
You do not currently have access to this content.